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(xi,y1) €S x R, i € [n] are i.i.d. samples yi = fi(x) + € Ele; | xi] < o2
Large dimensional framework: n =< d”

The goal is to find an estimator f with small loss:

E:= ‘F—ﬂ

Inner product kernel function: K:SY x S = R, K(x,X) = ®({x, X))

2
2’

Assume f, € [H]°, s > 0, where H is the Reproducing Kernel Hilbert Space (RKHS)
induced by K.
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(xi,y1) €S x R, i € [n] are i.i.d. samples yi = fi(x) + € Ele; | xi] < o2
Large dimensional framework: n =< d”

The goal is to find an estimator f with small loss:

E:= ‘F—ﬂ

Inner product kernel function: K:SY x S = R, K(x,X) = ®({x, X))

Assume f, € [H]°, s > 0, where H is the Reproducing Kernel Hilbert Space (RKHS)
induced by K.
Note.

@ Mercer Decomposition: K(x,x') = >, Aiei(x)ei(X)

2
2’

@ {\;} are the eigenvalues in descending order, and {e;(-)} are the eigenfunctions

o H = {Z, a,-/\}/2e,- (@), € 22}, norm || Z,a,—)\}/Ze;H%{ = Z,a?

o ['H]s = {Zia,-)\f/ze,- : (a,-),. e fz}, norm H Zi a,-)\f/ze,-H[ZH]s = Zi a,?
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Analytic Filtering Functions and Spectral Algorithms

Definitions Review

@ ©x(+): an analytic filter function of order 7 > 1

@ Let K : R — H be defined by Ki(y) = y- K(x, )
@ Define T, = KK and Tx = %ZLl Ty

e Define gz =137 vi- K(x;, ")

The estimator for the analytic spectral algorithm is defined as

A = ox(Tx)&z (1)

Summary:

Analytic filtering function of order = —  Analytic spectral algorithm of order
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Spectral Algorithms with Different 7

Example 1 (Kernel Gradient Flow)
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Assume there exists a constant 3 > 1 such that the eigenvalues satisfy \; =7

Review of Saturation Effects in Fixed Dimensions

Minimax rate: n—%/(8+1)

Optimal convergence rate of algorithms:

o Kernel Gradient Flow (7 = oc): n~*/(#+1)
o Kernel Ridge Regression (1 =1): s < 2, n=P/EBHY. o~ o p=26/(FH)

@ Analytic spectral algorithm of order 7:
s < 27, p~SB/(BHD. o op  p=2mB/(2rf+)

When s > 2, Kernel Ridge Regression performs worse than certain spectral algorithms
(e.g., Kernel Gradient Flow). J
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@ Inspired by the uniform convergence concepts of neural networks and Kernel Gradient
Flow, large-dimensional spectral algorithms have garnered renewed attention.

@ Previous research mainly focuses on Kernel Ridge Regression (KRR).
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@ Inspired by the uniform convergence concepts of neural networks and Kernel Gradient
Flow, large-dimensional spectral algorithms have garnered renewed attention.

@ Previous research mainly focuses on Kernel Ridge Regression (KRR).

If large-dimensional KRR exhibits saturation effects, then KRR underperforms compared
to Kernel Gradient Flow.

Hence, the above results cannot be directly extended to large-dimensional neural
networks.
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@ Inspired by the uniform convergence concepts of neural networks and Kernel Gradient
Flow, large-dimensional spectral algorithms have garnered renewed attention.

@ Previous research mainly focuses on Kernel Ridge Regression (KRR).

If large-dimensional KRR exhibits saturation effects, then KRR underperforms compared
to Kernel Gradient Flow.

Hence, the above results cannot be directly extended to large-dimensional neural
networks.

Motivations: Does the saturation effect exist in large dimensions?
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Main Result

When d is sufficiently large:

Analytic Spectral Algorithm with 7 > s

Suppose one of the following conditions holds:
(i) T =00, (ii)s>1/(27), (i) v > ((27 +1)s)/(27(1 +5));

Then there exists a penalty coefficient A\* > 0 such that

B(E(e) | X) = @az (4~ ™"0=PH) - poly (In(d)) .

Analytic Spectral Algorithm with 7 < s

| A\

. - T(y—pHL)4pE -
E(E(F) | X) = Oup (d— mln{’Y—P, R ,s(P+1)}> - poly (In(d)) ,

where 3 = min{s, 27}.

Minimax Lower Bound

inf  sup E(X,Y)Np@),,[g] = Qq (d* min{’Y*P,s(PJrl)})/ poly(ln(d)) .

| \

F f.eRy (Bl
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Numerical Experiment |: Convergence Rate of Kernel Gradient Flow

KRR Loss when s=1
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Numerical Experiment Il: Performance Comparison of KRR and Kernel

Gradient Flow for s=1.9 > 1
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Figure: Comparison of KRR and Kernel Gradient Flow loss. The penalty coefficients for both
algorithms are set as A = cd?, with @ chosen as the theoretically optimal value.
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