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Background

m What is Reinforcement Learning (RL)?

O RLis a method where agents learn to make decisions by interacting with an environment
O The agent observes a current state, takes an action, and transitions to a new state, receiving a reward

B Why is individualization crucial?

O Individualized RL tailors decisions based on unique characteristics, like preferences or physiological
traits, which affect state transitions
O Healthcare
* Individual-specific factors like genetic makeup impact responses to treatment
 Identifying these unique factors can personalize treatment plans, leading to improved health outcomes
O Education
» Differences in learning styles (e.g., visual vs. hands-on) affect how students absorb information
* RL can use these insights to recommend tailored learning activities, enhancing educational effectiveness
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Motivation

m Individual-specific factors in RL are often latent and unobserved

O Patient’s genetic traits may impact their response to treatment but remain hidden from observation
O Challenge to fully understand each individual’s unique influence on state transitions

m Identify these latent factors can better optimize personalized policies

O RL can tailor educational content to suit each student, improving learning outcomes
O Allow RL systems to adapt more effectively to individual needs and improve outcomes

m Contributions
O Introduction of Individualized Markov Decision Processes
O Theoretical guarantees for identifying individual-specific latent factors
O Practical generative method to estimate these factors and optimize policies



Problem Formulation

m Individualized Markov Decision Process (iMDP)
O State and Action Spaces: Common across individuals

O Individual-specific Factor (k): A latent variable unique to each group that influences state transitions

O Group and Individual Uniqueness: Individuals are grouped based on shared latent factors, while each
individual has unique identifiers

m Objective

O ldentify latent individual-specific factors k from observed trajectories
O Derive individualized policies for each agent and realize policy adaptation for newcomers

iMDP for individual m
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|dentifiability Theorem

B Purpose
O Guarantee that latent individual-specific factors k can be uniquely identified from observed trajectories

B Key Conditions

O Finite Latent Factors: |dentifiability guaranteed if the latent factor k has a finite set of values and
individuals are grouped accordingly

O Infinite Latent Factors: For complex cases with infinite or continuous latent factors, identifiability is
achieved under rank deficiency within post-nonlinear temporal model
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Methodology

m 1% Phase: Latent Factor Estimation
O Objective: ldentify latent individual-specific factors that impact state transitions
OO0 Process: Encode trajectories into latent representations and quantize using an embedding dictionary
O Provides a foundation for personalized policy adaptation by capturing unique, unobserved influences

m 2"9 Phase: Individualized Policy Learning
O Objective: Develop policies tailored to individual characteristics
O Process: Initialize policy using latent factors, then adapt through online interaction new individual
O Enhances policy effectiveness by aligning decisions with each individual’s unique traits

(b) Individualized Policy Learning (a) Individualized Factor Estimation
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Experiment Result: Latent Factor Estimation

m Conclusion

O Our method effectively estimates latent factors with strong correlation to true values, supporting
reliable individualization

H Results
O Fig (a): Our method achieves higher PCC values over time, outperforming baselines

O Fig (b-c): Kernel Canonical Correlation Analysis (KCCA) scatterplots indicate a near-perfect correlation
between estimated and true latent factors

O Fig (d): Larger sample sizes (M) and trajectory lengths (T) improve identifiability
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Experiment Result: Policy Learning Improvement

m Conclusion

O The proposed method demonstrates superior policy learning, leading to higher rewards and faster
convergence across tasks

m Results

O Pendulum: Proposed method achieves the highest rewards and faster convergence across episodes
O HeartPole: Consistently outperforms other methods with higher rewards
O Half Cheetah: Significant reward improvements and rapid convergence over time
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Summary

m Our work

O New approach for individualized reinforcement learning with theoretical guarantees
O Successfully estimates latent factors, supporting personalized policy optimization

m Limitations
O Does not address instantaneous causal influences within states
O Lacks nonparametric proof for continuous latent factors
O Does not account for time-varying latent factors
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Thank you for your listening!
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