
HydraViT: Stacking Heads for a Scalable ViT

Vision Transformers are NOT flexible!

Janek Haberer*, Ali Hojjat*, Olaf Landsiedel

*Equal contribution

Sort Heads,
Scale Anywhere!
TLDR: By sorting attention heads 
during training, we enable flexible 
inference that adapts to diverse 
hardware constraints by dropping 
the least important heads.D

ep
th

Number of heads (embedding dim)

ViT-Ti
(3H)

ViT-S
(6H)

ViT-B
(12H)

HydraViT: One model, many configurations
Train a single universal ViT model adaptable to diverse hardware:
• In each iteration, we train a randomly sampled subnetwork 

corresponding to the first k heads, including the associated weights in 
MLP, Norm, and Patch Embedding layers.

Result:
• Initial heads are involved more in training → more important.
• Later heads are involved less in training → less important.

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

MHA 3    4    5     6    7     8    9   10   11  12

…Su
bn

et
w

or
k 

Sa
m

pl
in

g

Iter = 1

Iter = 2

Iter = 3

Iter = 4

Iter = 5

Iter = 6

Iter = N

hidden_dim

#p
at
ch
es

embed_dim

x

embed_dim

x

#p
at
ch
es

embed_dim

= Ti

S

B

em
be

d_
di
m

batch_size

#p
atc
he
s

𝑊! 𝑊"

Ti S B Ti S B
Ti
S

B

Ti

S

B

𝐴! 𝐴"

• HydraViT outperforms baselines by up to 7 p.p. at the same throughput.

How do we extract subnetworks?

arXiv

GitHub

• The accuracy of HydraViT with our different design choices.

Results

+

MHAMHAMHAMHAMHAMHAMHAMHAMHAMHAMulti-Head
Attention

Norm

Norm

MLP

3    4    5     6    7     8    9   10   11  12

3    4    5     6    7     8    9   10   11  12

3    4    5     6    7     8    9   10   11  12

3     4      5     6      7      8      9     10    11   12

3    4    5     6    7     8    9   10   11  12

Patch
Embedding

+

After training, ViT
components are 

sorted by importance.

	 
 
	 



����,

�	

��

��

��

��

�	

��

�
#
#
.
+
"
#
0
� 
�

!

�

�

�

����,�/,���##.+"#0

�%'�

�0)"����

�0$+"�'�

�0$+"�'���		%�

�0$+"�'����
��&%"$,�

�"-�*+(%+

�*+-%$�%-


��� ���� ���� ���� �����

�&,*/%&+/.���
- 

��

�


��

��

��

��

�


�
"
"
/
,
!
"
1
��
�

 

�

�

�

�&,*/%&+/.�0-	��""/,!"1

�$'�

�1)!����

�1#,!�'�

�1#,!�'�����$�

�1#,!�'�����
�&$!#-�

�!.�*,($,

�*,.$#�$.

An example showcasing the proposed 
stochastic dropout training on MHA.

�


 



 �


 �


 �





�'-+0&',0/� �	.!

��

�


��

�


��

��

�
#
#
0
-
"
#
1
� 
�

!

�

�

�

�)"&%�%/��%"�

�%(�

�1*"����

�1$-"�(�

�1$-"�(���

%�

�1$-"�(�������'%"$.�

�"/�+-)%-

�+-/%$�%/


��� ���� ���� ���� �����

 )0.3()/32�"�
1#

��	�


�	�



	�


�	�


�	�

��	�

�
	�

��	�

�
%
%
3
0
$
%
4
�"
�
#

 

�

�

�,$('�'2��+'2%)

�'* 

�4-$��� 

�4&0$!* 

�4&0$!* ����'�

�4&0$!* ����
�)'$&1�

�$2�.0,'0

�.02'&�'2

ViTs offer different variants
• High hardware demand due to large attention matrices in MHA.
• ViTs provide multiple variants with different hardware demands.

Limitations of ViT’s variants
• Each must be individually trained, tuned, and stored.
• The number of configurations is limited, offering only a few options.

Observation
• The variants share the same architecture, differing only in the number of 

attention heads and embedding sizes, i.e., ViT-Ti ⊆ ViT-S ⊆ ViT-B.

1 Introduction

Motivation Following the breakthrough of Transformers (Vaswani et al., 2017), Dosovitskiy et al.
(2021) established the Vision Transformer (ViT) as the base transformer architecture for computer
vision tasks. As such, numerous studies build on top of ViTs as their base (Liu et al., 2021; Tolstikhin
et al., 2021; Yu et al., 2022). In this architecture, Multi-head Attention (MHA) plays an important
part, capturing global relations between different parts of the input image. However, ViTs have a
much higher hardware demand due to the size of the attention matrices in MHA, which makes it
challenging to find a configuration that fits heterogeneous devices.

Table 1: ViT Configurations

ViT-Ti ViT-S ViT-B
# Layers 12 12 12
Dim 192 384 768
# Heads 3 6 12
Dim per Head 64 64 64
# Params 5.7 M 22 M 86 M

To accommodate devices with various constraints, ViTs offer
multiple independently trained models with different sizes and
hardware requirements, such as the number of parameters, FLOPS,
MACs, and hardware settings such as latency and RAM, with sizes
typically increasing nearly at a logarithmic scale (Kudugunta et al.,
2023), see Table 1. Overall, in the configurations of ViTs, the
number of heads and their corresponding embedded dimension in
MHA emerges as the key hyperparameter that distinguishes them.

While being a reasonable solution for hardware adaptability, this
approach has two primary disadvantages: (1) Despite larger models, e.g., ViT-S and ViT-B, not having
a significant accuracy difference, each of these models needs to be individually trained, tuned, and
stored, which is not suitable for downstream scenarios where the hardware availability changes over
time. (2) Although the configuration range covers different hardware requirements, the granularity is
usually limited to a small selection of models and cannot cover all device constraints.

Observation By investigating the architecture of these configurations, we notice that ViT-Ti, ViT-S,
and ViT-B share the same architecture, except they differ in the size of the embeddings and the
corresponding number of attention heads they employ, having 3, 6, and 12 heads, respectively. In
essence, this can be expressed as V iTT → V iTS → V iTB , see Table 1.

Research question In this paper, we address the following question: Can we train a universal ViT
model with H attention heads and embedding dimension E, such that by increasing the embedded
dimension from e1 to e2, where e1 < e2 ↑ E, and its corresponding number of heads from h1 to h2,
where h1 < h2 ↑ H , the model’s accuracy gracefully improves?

+

MHAMHAMHAMHAMHAMHAMHAMHAMHAMHAMulti-Head
Attention

Norm

Norm

MLP

3    4    5     6    7     8    9   10   11  12

3    4    5     6    7     8    9   10   11  12

3    4    5     6    7     8    9   10   11  12

3     4      5     6      7      8      9     10    11   12

Subnetw
ork Selection

3    4    5     6    7     8    9   10   11  12

Patch
Embedding

+

Figure 2: Architec-
ture of HydraViT

Approach In this paper, we propose HydraViT, a stochastic training ap-
proach that extracts subsets of embeddings and their corresponding heads
within MHA across a universal ViT architecture and jointly trains them.
Specifically, during training, we utilize a uniform distribution to pick a
value k, where k ↑ H . Subsequently, we extract the embedded dimension
([0 : k ↓ HeadDim]), where HeadDim is the size of each head, and its
corresponding first k heads ([0 : k]) and only include these in both the
backpropagation and forward paths of the training process. To enable the
extraction of such subnetworks, we reimplement all components of the ViT
including MHA, Multilayer Perceptron (MLP), and Normalization Layer
(NORM), see Fig. 2. By using this stochastic approach, the heads will be
stacked based on their importance, such that the first heads capture the most
significant features and the last heads the least significant ones from the input
image.

After the training phase is completed, during inference, HydraViT can dy-
namically select the number of heads based on the hardware demands. For
example, if only p% of the hardware is available, HydraViT extracts a subnet-
work with the embedded size of ↔p↓H↗↓HeadDim and the first ↔p↓H↗

heads and runs the inference. This flexibility is particularly advantageous in
scenarios such as processing a sequence of input images, like a video stream, where latency is critical,
especially on constrained devices such as mobile devices. In such environments, where various tasks
are running simultaneously, and hardware availability dynamically fluctuates, or we need to meet a

2

Table 2: The accuracy of HydraViT with our different design choices. "3 Heads" corresponds to a
subnetwork that has the same architecture as DeiT-tiny, "6 Heads" corresponds to DeiT-small, and
"12 Heads" corresponds to DeiT-base.

Weighted Separate Epochs Acc [%] Acc [%] Acc [%]
Sampling? Classifiers? 3 Heads 6 Heads 12 Heads

✁ ✁ 300 72.56 79.35 80.63
✁ ✁ 400 73.16 79.63 80.90
✁ ✁ 500 73.54 80.09 81.30
✂ ✁ 300 72.02 79.35 80.98
✂ ✁ 400 72.45 79.85 81.49
✂ ✁ 500 72.50 79.89 81.63
✁ ✂ 300 72.78 79.44 80.52
✁ ✂ 400 73.24 79.88 81.13
✁ ✂ 500 73.42 80.12 81.13
✂ ✂ 300 72.13 79.45 81.18
✂ ✂ 400 72.46 79.93 81.58
✂ ✂ 500 72.65 80.08 81.77

DeiT-tiny/small/base 72.2 79.9 81.8

Subnetwork sampling function When trying to train a single set of weights containing multiple
subnetworks, we expect an accuracy drop compared to if each subnetwork had its own set of weights.
While we mention that we use a uniform discrete probability distribution to sample subnetworks, we
can also use a weighted distribution function. With weighted subnetwork sampling, we can guide the
model to focus on certain submodels more than others. This is useful in a deployment scenario in
which we have many devices with similar resources and want to maximize accuracy for them while
maintaining good accuracy for other devices with different resources.

4 Evaluation

In this section, we evaluate the performance of HydraViT and compare it to the baselines introduced
in Sec. 2. We assess all experiments and baselines on ImageNet-1K (Deng et al., 2009) at a resolution
of 224→ 224. We implement on top of timm (Wightman, 2019) and train according to the procedure
of Touvron et al. (2021) but without knowledge distillation. We use an NVIDIA A100 80GB PCIe to
measure throughput. For RAM, we measure the model and forward pass usage with a batch size of 1.
We also calculate GMACs with a batch size of 1, i.e., the GMACs needed to classify a single image.

For the experiments, we used an internal GPU cluster, and each epoch took around 15 minutes.
During prototyping, we estimate that we performed an additional 50 runs with 300 epochs.

First, we show that we can attain one set of weights that achieves very similar results as the three
separate DeiT models DeiT-tiny, DeiT-small, and DeiT-base (Touvron et al., 2021). Then, we look at
how our design choices, i.e., changing the number of heads coupled to the embedding dimension,
weighted subnetwork sampling, and adding separate classifiers for each subnetwork, impact the
accuracy. Afterward, we compare HydraViT to the following three baselines:

• MatFormer Kudugunta et al. (2023) focus only on the hidden layer of the MLP to achieve a
flexible Transformer and do not change the heads in MHA or the dimension of intermediate
embeddings.

• DynaBERT Hou et al. (2020) adjust the heads in MHA in addition to the dimension of
MLP and, as a result, make both flexible. However, the intermediate embedding dimension
is the same as the original one in between each Transformer block and between MHA and
MLP, which results in more parameters and MACs.

• SortedNet Valipour et al. (2023) change every single embedding, including the ones between
MHA and MLP and between Transformer blocks. However, they keep the number of heads
in MHA fixed, resulting in less information per head and introducing inconsistencies in the
scaling of the heads in MHA.

6

The least
important head

The most
important head

L12

L3

L2

L1
…Vision Transform

er 

ViT with 3 
heads

ViT with 6 
heads

Heads sorted by importance

ViT with 9 
heads

𝐻! 𝐻" 𝐻# 𝐻$ 𝐻% 𝐻& 𝐻' 𝐻( 𝐻) 𝐻!* 𝐻!! 𝐻!"

𝐻! 𝐻" 𝐻# 𝐻$ 𝐻% 𝐻& 𝐻' 𝐻( 𝐻) 𝐻!* 𝐻!! 𝐻!"

𝐻! 𝐻" 𝐻# 𝐻$ 𝐻% 𝐻& 𝐻' 𝐻( 𝐻) 𝐻!* 𝐻!! 𝐻!"

𝐻! 𝐻" 𝐻# 𝐻$ 𝐻% 𝐻& 𝐻' 𝐻( 𝐻) 𝐻!* 𝐻!! 𝐻!"

Cut anywhere!

…… ……


