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HydraViT: Stacking Heads for a Scalable ViT

Vision Transformers are NOT flexible!

ViTs offer different variants

« High hardware demand due to large attention matrices in MHA.
* ViTs provide multiple variants with different hardware demands.

ViT-Ti ViT-S ViT-B

# Layers 12 12 12

Dim 192 384 768
# Heads 3 6 12
Dim per Head 64 64 64
# Params 57M 22 M 86 M

Limitations of ViT’s variants

« Each must be individually trained, tuned, and stored.

 The number of configurations is limited, offering only a few options.

Observation

Janek Haberer*, Ali Hojjat*, Olaf Landsiedel

*Equal contribution

Sort Heads,
Scale Anywhere!

TLDR: By sorting attention heads
during training, we enable flexible
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How do we extract subnetworks?
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HydraViT outperforms baselines by up to 7 p.p. at the same throughput.

Throughput vs. Accuracy

* The variants share the same architecture, differing only in the number of
attention heads and embedding sizes, i.e., ViT-Ti € ViT-S < ViT-B.
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HydraViT: One model, many configurations

Train a single universal ViT model adaptable to diverse hardware:
* In each iteration, we train a randomly sampled subnetwork
corresponding to the first k heads, including the associated weights in

inference that adapts to diverse
hardware constraints by dropping
the least important heads.

Heads sorted by importance
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MLP, Norm, and Patch Embedding layers.
Result:

 Initial heads are involved more in training - more important.
« Later heads are involved less in training - less important.
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An example showcasing the proposed
stochastic dropout training on MHA.
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Cut anywhere!
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GMACs vs. Accuracy
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The accuracy of HydraViT with our different design choices.

Weighted Separate Epochs Acc[%] Acc[%] Acc [%]
Sampling?  Classifiers? P 3 Heads 6 Heads 12 Heads
X X 300 72.56 79.35 80.63

X X 400 73.16 79.63 80.90

X X 500 73.54 80.09 81.30

v X 300 72.02 79.35 80.98

v X 400 72.45 79.85 81.49

v X 500 72.50 79.89 81.63

X 4 300 72.78 79.44 80.52

X v 400 73.24 79.88 81.13

X v 500 73.42 80.12 81.13

v 4 300 72.13 79.45 81.18

v v 400 72.46 79.93 81.58

v v 500 72.65 80.08 81.77
DeiT-tiny/small/base 72.2 79.9 81.8




