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Various forms of corruptions X 1. pough (magenit abe

2. Pizza
_ 3. Soup bowl
* Noisy labels 4
* Missing values
. . _,—
* Low-quality data, uncertainty P

Sensor noise SmEmte

Failing measuring equipment

No 100% accurate data
Uncertainty is inevitable!
— corrupted samples



Setup

Input: n training points {(X;, Yobs, z;, Mi)}:;l and a test point (Xiest, 7)
— exchangeable (e.g., i.i.d.) samples from unknown joint dist.

X € X :features

Y©°PS € U: observed label/response

Y € Y : ground truth label

Z € Z : privileged information (PIl) - available only during training time

* E.g., The annotator’s level of expertise

M € {0,1} : noise indicator M = 1 & Y°PS is noisy

* Assumption: the Pl Z explains the corruption appearances (X,Y) L M | Z

* See paper for a more general framework covering missing or noisy features and labels.



Ultimate goal: reliable UQ under corruptions

* Input: n training points {(X;, Yobs, z;, Mi)}:;l and a test point (Xiest, 7)
— exchangeable (e.g., i.i.d.) samples from unknown joint dist.

* Xiest = Xp41 € X : clean test features

* Yiest = Y11 € Y : clean, unknown, test response

Wish to use any ML algorithm to construct a marginal distribution-free prediction set
PlViesi € C(Xiest)] = 1 — a (e.g., 90%)

a € (0,1) is a user-specified miscoverage rate



Ultimate goal: reliable UQ under corruptions

* Input: n training points {(X;, Yobs, z;, Mi)}:;l and a test point (Xiest, 7)
— exchangeable (e.g., i.i.d.) samples from unknown joint dist.

* Xiest = Xp41 € X : clean test features

* Yiest = Y11 € Y : clean, unknown, test response

Wish to use any ML algorithm to construct a marginal distribution-free prediction set
PlViesi € C(Xiest)] = 1 — a (e.g., 90%)

a € (0,1) is a user-specified miscoverage rate

* Construct C(X;est) Using the observed corrupted data how and under what
* Guarantee that clean Y. is covered in € (Xiest) conditions is it possible?



Background on conformal prediction



COﬂfOrmal pred Iction [Vovk et al. ’99; Papadopoulos et al. ‘12, Lei et al. ’18; ...]

* Input: pre-trained predictive model f, and holdout calibration set {(X;, Y Heq

* Process
— Compute non-conformity scores s; = S(X;,Y;) forall i

a measure of goodness-of-fit (the lower the better), e.g., s; = |f(Xl-) — Yi|



COnfOrmal pred Iction [Vovk et al. ’99; Papadopoulos et al. ‘12, Lei et al. ’18; ...]

* Input: pre-trained predictive model f, and holdout calibration set {(X;, Y Heq

* Process
— Compute non-conformity scores s; = S(X;,Y;) forall i
— Compute* §°'¢?" = the (1 — a)-empirical quantile of {s;}-,

* Output: prediction set
90% quantile

A A A
C(Xtest' qclean) — {y: S(Xtest: Y) < qclean} ;
- |
"é I
I3 |
Sweep over all y € Y and return the guessed y’s :
|
whose score falls below §¢'¢2" |

~clean

q

*missing a small correction term Non-conformity Score



Conformal prediction is valid under exchangeability

Theorem (Vovk et al. ’99; Papadopoulos et al. ’12; Lei et al. ’18; R., Patterson, Candes ’19, ...)

If (X¢,Y1),...,(X,,Y,,) and (Xicst, Yiesr) are exch. Then,

IP>[1/test € C(Xest QClean)] >1—a (e.g., 90%)

+ Exchangeability is the only assumption

- Assumes that the training data is clean



Weighted conformal prediction ribshirani et al. 19]

* We consider only the scores of non-corrupted samples and weight their
distribution by the ratio of likelihoods between the test and train data:

P(M = 0)
P(M=0|Z=z)

= accounts for distr. shift

w(z) =

*Note: Here, only uncorrupted data points are used, as they reflect the true distribution of the scores under
covariate shift.



Weighted conformal prediction ribshirani et al. 19]

* We consider only the scores of non-corrupted samples and weight their
distribution by the ratio of likelihoods between the test and train data:

P(M = 0)
PM=01|Z=2)
e The threshold QWCP(Ztest) js the 1 — a empirical quantile of the weighted
distribution of the uncorrupted samples’ scores

w(z) =

90% quantile

>

Weighted Density

[
QWCP(Ztest)
Non-conformity Score

>




Weighted conformal prediction ribshirani et al. 19]

* We consider only the scores of non-corrupted samples and weight their
distribution by the ratio of likelihoods between the test and train data:

P(M = 0)
PM=01|Z=2)
e The threshold QWCP(Ztest) js the 1 — a empirical quantile of the weighted
distribution of the uncorrupted samples’ scores

w(z) =

* The prediction set is constructed as
CWCP(Xtest, Ztest) — {y:S(XteSt, y) < QWCP(Ztest)}

+ Achieves the desired coverage level even under presence of corrupted samples!

- Infeasible! Requires access to the unknown Zt€st



Proposed method: Privileged Conformal Prediction



Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold
QWCP(Z)) for the i-th sample

- Take QPP as the (1 — B)-empirical quantile of {QWCP(Z,;)}?=1
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Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold
QWCP(Z)) for the i-th sample

- Take QPP as the (1 — B)-empirical quantile of {QVVCP(Z,;)}?=1

- Construct the prediction set for Yiagt

CPP Xiest) = (Vi SKiest, ¥) < QFCF}



Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold
QWCP(Z)) for the i-th sample

- Take QPP as the (1 — B)-empirical quantile of {QVVCP(Z,;)}?=1

- Construct the prediction set for Yiagt
CPCP(Xtest) — {y:S(Xtest» Y) = QPCP}

{w(Z;)}; are exch. + Q is an increasing function
= QFCP is conservative QWCF (Ztest)

= PCP is valid



Privileged conformal prediction is valid

Theorem

If {(X;,Y;, Z;, M;)}"" are exch., and Py is absolutely continuous with respect to Pz o,
then,

IP)[Ytest = CPCP(XteSt)] =21l-a

+ Finite sample, dist. free guarantee!

+ Does not require Z st



Application: noisy labels



Experiment: CIFAR-10N — noisy labels

Task: classify the object in an image (K = 10 classes)
Clean Y: the correct object label

Observed Y°PS: obtained by a single human annotator (incorrect for M = 1)

Pl Z = information about the annotator.
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Conclusion and uncovered topics



Conclusion

* Proposed PCP to handle imperfect data using PlI
* PCP achieves comparable performance to the infeasible WCP

* Coverage rate is supported by theoretical guarantees

Uncovered topics (ongoing work)
* Adaptation of PCP for scarce data
* |s PCP robust to inaccurate weights?

* |s PCP still valid if the Pl Z does not satisfy the conditional independence assumption?
e X,)Y)LM|Z

Thank you!
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