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Federated Learning and Gradient Inversion

In federated learning a model is trained in
[\ a distributed fashion where clients only send
gradient updates to the server in order to
preserve their data privacy.
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Unfortunately, an adversarial server can
reconstruct client data x from received

@ @ @ gradient updates:
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Deep Leakage from Gradients, Nuerips 2019, Zhu et. al https://arxiv.org/abs/1906.08935
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Federated Learning and Gradient Inversion

/—\ In federated learning a model is trained in

= a distributed fashion where clients only send

1EQ gradient updates to the server in order to
f preserve their data privacy.

Unfortunately, an adversarial server can
reconstruct client data x from received
gradient updates:

®
I 1 i argmin E(V f(x), V f(2))

Key Question: When is it possible to exactly recover the client data?

Deep Leakage from Gradients, Nuerips 2019, Zhu et. al https://arxiv.org/abs/1906.08935
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Low Rankness of Gradient Updates

Assume linear layer with RelLU activation:

Z=W-X+0b X ¢ RV*B
Y = ReLU(Z) W c RM*N
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Low Rankness of Gradient Updates

Assume linear layer with RelLU activation:

Z=W-X+0b X ¢ RV*B
Y = ReLU(Z) W e RMxN

The gradient of the linear layer can be written in the form:

OL(f(z)y)  OL(f(=z)y) T
ow T 9z '\X |

M x N MxB BXxN

Key Observation: The gradient of W is not full rank for B < min(N, M).



Sparse Gradients of ReLU Activations

Assume linear layer with RelLU activation:

Z=W-X+0b X € RV*B
Y = ReLU(Z) W c RM*N

Gradients of ReLU activations:
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0/1 mask based on the sign of Z



Sparse Gradients of ReLU Activations

Assume linear layer with RelLU activation:

Z =W -X+5b X € RYV*B
Y = ReLU(Z) W c RM*N

Gradients of ReLU activations:

OL(f(x),y) OL(f(x),y)
5z~ oy O liz>0)

,
0/1 mask based on the sign of Z

Key Observation: The RelLU activation makes gradient of Z sparse




Gradient Decomposition

Use SVD to create low-rank decomposition of the gradient of W:
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Gradient Decomposition

Use SVD to create low-rank decomposition of the gradient of W:

L R
OLUEY) _ s yT — . s Vs VT
oW M x B Bx N

We show that under mild assumptions: there exists an unique Q c RB*B st..

OL(f(z),y) — 7. Q XT — Q_l - R

0Z

Key Observation: The Low-Rankness simplifies the problem from N XBto BX B



Exploiting Gradient Sparsity (Example)

Assume that first 3 neurons are not activated for some input x in a batch with B=3:

0
0
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Exploiting Gradient Sparsity (Example)

Assume that first 3 neurons are not activated for some input x in a batch with B=3:
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Exploiting Gradient Sparsity (Example)

Assume that first 3 neurons are not activated for some input x in a batch with B=3:

0
0 B 0 7
oL(sfy) _ | O _ T
-~ |o1| L4 i Ol =Lpne2s -9
: | 0
1 0.5 _
If we also assume that rank (Ly; 5 3) == 2, we have:

q = c-basis(Lj23)



Exploiting Gradient Sparsity

Theorem: For randomly initialized networks with probability approxi-%ately
a vector q’ obtained that way is a column of Q(up to scale). 2

Key Idea: Sample random submatrices of L and obtain the respective q



Exploiting Gradient Sparsity

Theorem: For randomly initialized networks with probability approxi-%orately

a vector q’ obtained that way is a column of Q(up to scale). 2b

To discard bad vectors q’ we compute the sparsity of their associated gradient:

OL(f(x)y)
=5l =IIL-dllo <7 -M

Key Idea: Sample random submatrices of L and obtain the respective ¢’



Recovering Scale

S / .
Let q; = C;q; , where C; is unknown. Then one can recover C; by:

C1 _ _
€2 -1 acL(f(z)) . |
— aN L), . PRy
l=Lt-Q - P 2 with Q=1|¢ & ... dy
N |
| CB _

Key Observation: The gradient of the bias b can be used to recover scale.
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Main Results

We run our experiments on 6 layers FCNN with batch size B=20 on image data:

Method PSNR 1+ Time/Batch

CI-Net [ 12] Sigmoid 38.0 1.6 hrs

CI-Net [12] ReLU 15.6 1.6 hrs

Geiping et al. [1] 19.6 18.0 min

SPEAR (Ours) 124.2 2.0 min
Dataset PSNR 1 LPIPS | Acc (%)t Time/Batch
MNIST 99.1 NaN 99 2.6 min
CIFAR-10 106.6 1.16 x107° 99 1.7 min
TINYIMAGENET 110.7 1.62x104 99 1.4 min
IMAGENET 224 x 224 125.4 1.05x107° 99 2.1 min
IMAGENET 720 x 720 125.6 8.08x10 11 99 2.6 min

Generative Gradient Inversion via Over-Parameterized Networks in Federated Learning, ICCV 2023, Zhang et. al https://openaccess.thecvf.com

Inverting Gradients -- How easy is it to break privacy in federated learning?, Neurips 2020, Geiping et. al https://arxiv.org/abs/2003.14053
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Main Results - Visualisation

Exact Reconstruction
(SPEAR - ours)

Approximate Recon.
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Original Image

Inverting Gradients -- How easy is it to break privacy in federated learning?, Neurips 2020, Geiping et. al https://arxiv.org/abs/2003.14053
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Tabular Data Results

We also work with tabular data where FCNNs are common:

Method Discr Acc (%) T Cont. MAE | Time/Batch
Tableak [8] 97 4922.7 2.6 min

SPEAR (Ours) 100 20.4 0.4 min

TabLeak: Tabular Data Leakage in Federated Learning, ICML 2023, Vero et. al https://arxiv.org/abs/2209.05578
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Convolutional Network Results

We first recover the input features to the linear layers of the CNN and then
execute a combination of feature inversion and gradient inversion attack:

Method LPIPS | Feature Sim T

Geiping et al. [1] 0.562 -
CPA[9] + FI + Geiping et al. [1] 0.388 0.939
SPEAR + FI + Geiping et al. [ 1] 0.362 0.984

Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis, ICML 2023, Kariyappa et. al https://arxiv.org/abs/2209.05578
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Further details can be found in the paper.
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