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n Background

€ Many researchers want to use neural networks to predict the
optimal solution of constrained decision-making problems for
accelerating solution process.

¢ Unfortunately, standard activation layers can only impose simple
constraints on their outputs.

4 A ¢(c>=1f§§é2)

X = ReLU(c) X = Sigmoid(c) X = Softmax(c)
= x>0 =>0<x<l1 =>x>0,1™x=1
¢ How to make neural network outputs satisfy general linear
constraints?

AX<b,AX=Db,AAx=b;,I"'<x<U
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Background

Possible solutions ...
€ Penalize constraint violation in loss

= Hard to choose penalty coefficient and violation can be
unbounded

€ Reinforcement learning with hard-coded action space
= Limited applicable scenarios

¢ Differentiable optimizer based methods
= encounter dilemma in supported constraint types and efficiency
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arg m|n c' x+r(x)
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A pipeline that shows how GLinSAT layer works.
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H Methodology

€ Our aim is to make neural network outputs satisfy general linear
constraints while maximizing utilization of GPU parallelism

€ By adding slack variables and linearly transforming the variables, we
first convert the linear constraint into a standard form

AX<b,AXx>b,, Ax=b,lI"'<x<U

N
AX=Db0<x<uU




n Methodology

€ We use dot product to measure similarity between ¢ and x, and
reformulate projection problem as a logistic entropy-regularized
linear programming problem to make the problem differentiable
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€ We show that the problem can be transformed into an unconstrained
convex optimization problem with Lipschitz continuous gradient.

AX<b,AX=b, AXx=b,I'sx<U min—ch+%1T (§o|og§+(1_5jo|og(1—5n

u u u u
S.t.AX=Dh,0<x<uU

NV
AXZb,OSXSU min—%fIoga(HUo(—c—ATy))—bTy
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n Methodology

€ The subsequent question is how to use
GPU for efficient solution in the
calculation.

€ Note that the problem can be

Algorithm 1: Solving the entropy-regularized linear programming
problem in GLinSAT
Input: A€ R™*" beR™, ceR", u R, inverse temerature 6 > 0,
tolerance ¢ > 0, initial estimate of Lipschitz constant L),
initial estimate of dual variables y*), numerical precision ¢ > 0
Set k=0, MO = L0 50 = ¢0) = 4(0)
" =uoo (—buo (—c— AT’y(O))), BO) = o0
while ||Az™™ —b||, > ¢ do

Set kD) — (1 1+ 4M(k>[3(k>) / (2M®);

Set ﬂ(k-&-l) — ﬂ(k) + a(k_H);

=0, f = False;

transformed into an unconstrained
convex optimization problem with
Lipschitz continuous gradient

€ In forward pass, we design a batch
matrix-factorization-free  algorithm
that can efficiently utilize the GPU
based on the adaptive primal-dual
accelerated gradient descent method
(APDAGD).

Output: Optimal primal variables %), Optimal dual variables n'

Set 7(k+1) — a(k+1)/6(k+1);
Qet Alk+1) — n(k) + (kD) (C(k) _ n(k));
Set ¢ (A*)) =wuoo (—fuo (—c— ATAFT));
Set C(k+1) C(L k:+1) (A.’B (A(kJrl ) b);
Set n (k+1) _ n(k) +T(h+1 (C(k+l n(k )
(o (1) — (g (W) 5%
— || Az (AF+D) —b||2 / (204) then

if f = True then

| Set MU+ = A1(k) /2
else

| Set M+ = pr(k);
end
Set x(F+1) = (k) 4 7041 (x ()\(k“)) —zM), f = True;
Set k=k+1;
else
| Set M%) = oM *) f = False;
end

end

k)
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€ The subsequent question is how to use GPU for efficient solution in
the calculation.

€ Note that the problem can be transformed into an unconstrained
convex optimization problem with Lipschitz continuous gradient

€ In backward pass, we not only designed a direct derivation method
using Pytorch's automatic differentiation, but also designed a
method using implicit differentiation based on KKT conditions.

h(y)= A(Uoo-(—é’Uo(—c—AT y)))—b:O

ol _dlax (aax al)(eh) oh
oc oxac \oxay oy )\oy) ac
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H Experiments

O In large-scale unit commitment, we predict the optimal unit status and make them
satisfy the key rigid constraints: the minimum uptime/downtime constraints.

O Matrix with more than 1,000,000 rows and 2,000,000 columns in one batch

O Compared with the existing linear satisfiability layer OptNet and CvxpyLayers, our
method achieves 10 times or even 100 times acceleration

O We can find the satisfiability layer can significantly improve the feasibility of neural
network prediction while ensuring a certain degree of optimality.

Com.pa.risc.)p of comp}ltati(?n time Qf linear Feasibility ratio and average gap after

satisfiability layers in unit commitment fixing unit status via neural networks
Time used in Time used in Parameter Feasibilit Average

Method forward backward Lty Optimality
1/6 Ratio
pass/s pass/s Gap

CvxpyLayers 2771 684.0 0.01 86.23% 0.1119%
OptNet 257.4 23.60 0.001 98.17% 0.1109%

GLinSAT 26.78 1.636 0.0001 100% 0.1114%
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H Experiments

O Since GLinSAT can be applied to general linear constraints, we also apply GLinSAT
to the Traveling Salesman Problem (TSP), partial graph matching to illustrate the
effectiveness of GLinSAT.

O Compared with existing satisfiability layers, our method requires less memory
and can achieve significant acceleration, improving training efficiency and making
the training process which was previously impractical now viable and efficient.

Comparison of computation time of linear Comparison of computation time of linear
satisfiability layers in TSP satisfiability layers in partial graph matching
TSP-StartEnd TSP-Priority Method v BatchMB Batch Time/s
Method Batch Batch Batch Batch emory/
Memory/MB  Time/s Memory/MB Time/s CvxpyLayers — 80.35
CvxpyLayers — 130.49 — 136.44 OptNet 993.5 3.002
OptNet 19310 19.849 19338 21.396 LinSAT 3076.3 8 456
LinSAT 74289.2 3.25 74452.9 3.246
GLinSAT  66.58 0.449 66.58 0.495 GLISAT 862.1 0428

Note: The GPU memory used by CvxpyLayers is not counted since CvxpyLayers use the CPU Note: The GPU memory used by CvxpyLayers is not counted since
parallel mechanism CvxpyLayers use the CPU parallel mechanism
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