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Increasingly More Al Results by Compound Systems

monolithic models compound Al systems ‘

» Key shift: From 1 model call to many model calls
» Examples: AlphaCode 2, AlphaGeometry, Gemini's CoT@32, MedPrompt, ...
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But How Do Compound Al Systems Scale?
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Our Focus : Two Compound Al Systems (1/2)

Generaton\

query Generator answer

Generator

‘ Vote ‘

» Easy to understand and thus commonly used
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Our Focus : Two Compound Al Systems (1/2)

Google DeepMind

Generator Gemini: A Family of Highly Capable
Multimodal Models

Gemini Team, Google!

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities
q u e ry G e n e r at 0 r V Ot e a n SW e r across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano
sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained
use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model
advances the state of the art in 30 of 32 of these benchmarks — notably being the first model to achieve

human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the
art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of
the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of
use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to

users through services including Gemini, Gemini Advanced, Google Al Studio, and Cloud Vertex Al

Generator
10.2. Chain-of-Thought Comparisons on MMLU benchmark

‘ VOt e We contrast several chain-of-thought approaches on MMLU and discuss their results in this section. We
proposed a new approach where model produces k chain-of-thought samples, selects the majority vote

» Easy to understand and thus commonly used
» Example: Google Gemini's CoT@32 strategy (slightly more complex)
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Our Focus : Two Compound Al Systems (2/2)

Generator Filter \

query Generator]—> Filter answer

Generator Filter /

‘ Filter-Vote ‘

» Easy to understand and thus commonly used

4 Lingjiao Chen, Stanford



Our Focus : Two Compound Al Systems (2/2)
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Generator Filter

- AlphaCode 2
‘ Filter-Vote ‘ models

» Easy to understand and thus commonly used
» Example: AlphaCode 2 for code generation (slightly more complex)
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Our Finding: The Non-monotonic Behavior

<+\/ote =Filter-Vote
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» As More LLM calls are invoked, the performance can
> (i) increase then , or (i) and then increase (1)
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Why Does the Non-monotonic Behavior Occur?
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Our Analysis: Query Difficulty-based Explanation
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Our Analysis: Query Difficulty-based Explanation
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Our Analysis: Query Difficulty-based Explanation
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» More LLM callls: better on easy queries, but on difficult queries!
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More in Our Paper

» Difficulty-based explanation » How to predict the scaling properties

O

> The formal notion C 0.4]|° Vote
= ® Filter-Vote
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» Concrete examples a
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Empirical Performance
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Takeaway Message

Perf of Vote and Filter-Vote Is
non-monotonic in # LLM calls

The diversity of query
difficulty explains this

Heuristics can predict the
optimal # of LLM calls

Link to project website
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