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%0



Overview

Problem: Gradient descent (GD) is an inherently local algorithm,
but standard analyses rely on global, worst-case assumptions.

Contributions:

e We propose directional smoothness, a point-wise relaxation of
Lipschitz continuous gradients (a.k.a. L-smoothness).

2/10



Overview

Problem: Gradient descent (GD) is an inherently local algorithm,
but standard analyses rely on global, worst-case assumptions.

Contributions:

e We propose directional smoothness, a point-wise relaxation of
Lipschitz continuous gradients (a.k.a. L-smoothness).

e We use directional smoothness to derive path-dependent
sub-optimality bounds for GD.

2/10



Overview

Problem: Gradient descent (GD) is an inherently local algorithm,
but standard analyses rely on global, worst-case assumptions.

Contributions:

e We propose directional smoothness, a point-wise relaxation of
Lipschitz continuous gradients (a.k.a. L-smoothness).

e We use directional smoothness to derive path-dependent
sub-optimality bounds for GD.

e We prove that the Polyak step-size and Normalized GD match
the fast rates of GD with strongly adapted step-sizes.
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Background on L-Smoothness

Setting: minimize a convex, differentiable function f using GD:

Ty < xp — MV f(xg).
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Background on L-Smoothness

Setting: minimize a convex, differentiable function f using GD:

Ty < xp — MV f(xg).

Standard Analyses assume that V f is L-Lipschitz.

e [ is the smallest constant such that for every z,y,

Fl) < @)+ (Vi@)y—2) + 5y —

e To hold globally, the Lipschitz constant must reflect the
worst-case growth of f,

1 s IV @) = V7>

2y [z = yll2
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Directional Smoothness

Definition: M is a directional smoothness function if Vz, vy,

Fly) < f(@)+ (Vix),y—2) + M(y,x)
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Concrete Directional Smoothness Functions
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%o



Concrete Directional Smoothness Functions

We give explicit directional smoothness functions — no oracles!

e Point-wise Smoothness:

Do) = AVIW) = V5l
| ly=al>

%o



Concrete Directional Smoothness Functions

We give explicit directional smoothness functions — no oracles!

e Point-wise Smoothness:

Do) = AVIW) = V5l
| ly=al>

e Path-wise Smoothness:

Afy,w) = sup AL —2) = QVf(l’), y—a)
t€[0,1] tHy_xHQ

o



Concrete Directional Smoothness Functions

We give explicit directional smoothness functions — no oracles!

e Point-wise Smoothness:

Do) = AVIW) = V5l
| ly=al>

e Path-wise Smoothness:

Afy,w) = sup AL —2) = QVf(l’), y—a)
t€[0,1] tHy _tz

e Exact Smoothness:

2f ()~ f(@) = (VH(@)y — )

H —
(v 2) Ty =2l
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Path-Dependent Convergence Rates

Theorem (Convex)

If f is convex, then GD with any step-sizes {n} satisfies,
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o K 2 g 2 2
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Path-Dependent Convergence Rates

Theorem (Convex)

If f is convex, then GD with any step-sizes {n} satisfies,

* K 2 7 1 g 2
min f(zx)—f(z*) < |20 — HEJFZ;LU ’//)('//tM// — l)va<»’17i>H£
ke[K] B 225\:0 i ‘—)Zf\:o Mi

)

o If gy =1/M(xk+1(nk), zk) is strongly adapted, then we get
path-dependent rates:

|zo — =*||3
K+1

S, M,
K+1

min f(zg) — f(z%) <

ke[K]
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Strongly Adapted Step-Sizes

Computing strongly adapted step-sizes is an implicit equation,

e = 1/M(zp1(0r), 2r)-
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Strongly Adapted Step-Sizes

Computing strongly adapted step-sizes is an implicit equation,

e = 1/M(zp1(0r), 2r)-

Does any method obtain match the
strongly-adapted rate without knowing M?
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The Polyak Step-Size

Polyak Step-size: assuming knowledge of f(z*), set v > 1 and
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The Polyak Step-Size

Polyak Step-size: assuming knowledge of f(z*), set v > 1 and

= I — Jl7)
YV ()3

Theorem (Informal)

If f is convex, then GD with Polyak step-size and v = 1.5 satisfies

. * :)’on - .%'*H% Zli() M (:Bi1¢$i)
— < g
krg[lII(l]f(xk) fla) = K K ’
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Directional Smoothness: Tighter Rates in Practice

How does this path-dependent theory compare to
standard /-smooth rates?
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Directional Smoothness: Tighter Rates in Practice

How does this path-dependent theory compare to
standard /-smooth rates?
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~8=1/M(z}41, 21) = Polyak Bound (L-Smooth) == Bound (1/M(x}+1,21)) == Bound (Polyak)
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Learn more at our poster!
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