Interventional Causal Discovery in a Mixture of DAGs

Burak Varici

Carnegie Mellon University

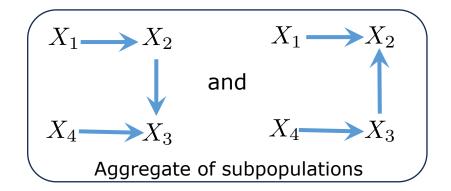
Dmitriy A. Katz

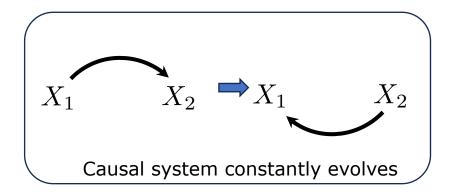
IBM Research

Dennis Wei

IBM Research

Prasanna Sattigeri


IBM Research



Ali Tajer Rensselaer Polytechnic Institute

Motivation

- **Time-varying systems**: causal relationships can change over time.
- Cyclic relationships: causal effects can form a cycle, e.g., feedback loops.
- Modeling subpopulations: e.g., subtypes of cancers do not share the same exact biological pathways

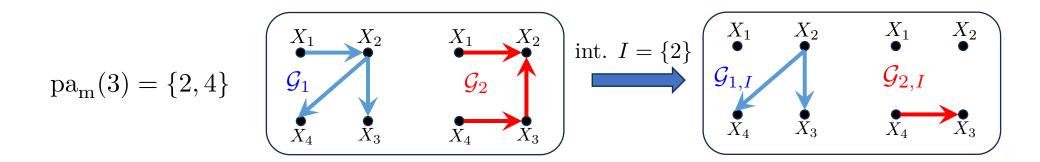
These complex models are better modeled by a mixture of DAGs!

Mixture model

• A mixture of (unknown) K DAGs over n nodes: $\{\mathcal{G}_1, \dots, \mathcal{G}_K\}$

$$p_{\rm m} = \sum_{\ell \in [K]} w_{\ell} \cdot p_{\ell}$$
, where $\sum_{\ell \in [K]} w_{\ell} = 1$

• True edges: exist in at least one component DAG, define mixture parents


$$\operatorname{pa_m}(i) = \bigcup_{\ell \in [K]} \operatorname{pa}_{\ell}(i)$$

• Prior work: observational data, restrictive assumptions and/or results

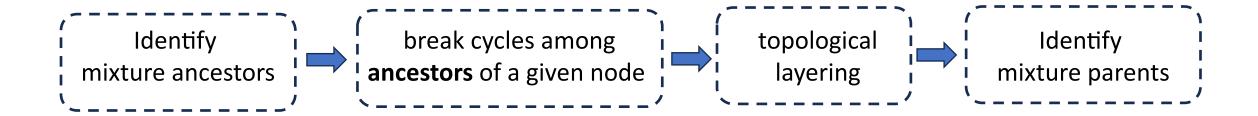
Interventional data

- Challenge for mixture: CI tests on observ. data is not sufficient for learning true edges
- Intervention model: Target a subset of nodes $I \subset [n]$, cut off parents across the mixture

$$p_{\ell}(x_i \mid x_{\text{pa}(i)}) \to q_i(x_i) , \quad \forall i \in I, \ \forall \ell \in [K]$$

Objective: Identify true edges via interventions on the mixture

Necessary & sufficient intervention sizes

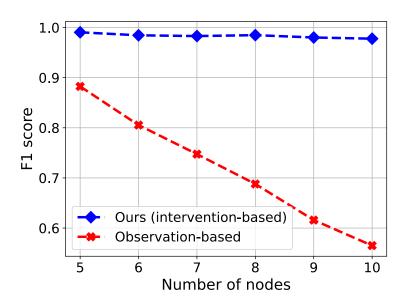

Theorem (int. size - general): To find mixture parents $pa_m(i)$ of node i via CI tests,

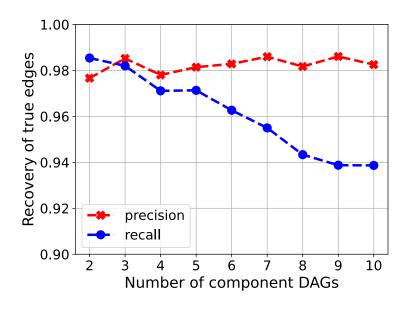
- 1. interventions with size $|I| \leq |pa_m(i)| + 1$ are sufficient,
- 2. at the worst-case, interventions with size $|I| = |pa_m(i)| + 1$ are **necessary**.

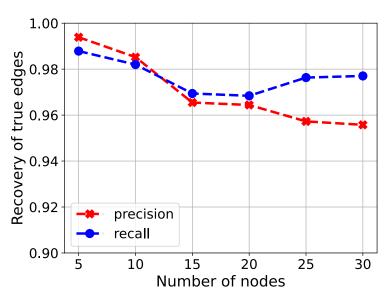
Theorem (int. size - trees): To find mixture parents $pa_m(i)$ of node i in a mixture of trees

- 1. interventions with size $|I| \leq K + 1$ are sufficient,
- 2. at the worst-case, interventions with size |I| = K + 1 are **necessary**.

Learning algorithm




cyclic complexity τ_i : minimal int. size to break such cycles (empirically small)


Theorem: Algorithm identifies all true edges using $\mathcal{O}(n^2)$ interventions, with size at most $|\mathrm{pa_m}(i)| + \tau_i + 1$ for each node.

Experiments

- Evaluate for recovering true edges on a mixture of Gaussians
- Verifying the need for interventions
- Strong performance for varying number of nodes & mixture components

Interventional Causal Discovery in a Mixture of DAGs

Paper: https://arxiv.org/abs/2406.08666

Code: https://github.com/bvarici/intervention-mixture-DAG

Conference: Poster session 4, Wednesday December 12, 4.30-7.30pm

Contact: <u>bvarici@andrew.cmu.edu</u>

Project page