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Why Cooperative Motion Forecasting ; Y

* Most of the existing works pay more attention to cooperative perception, mainly focusing on

single-frame cooperation to enhance perception ability.

» Motion forecasting is a downstream task of perception, which directly influences the actions of

the autonomous vehicle and has not been well explored.
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Problem Formulation 5 X

Input
Cooperative Scenario S = {T,L}
« Multi-source Trajectory
T ={Tego, Tother} T e RN:XTxC:  Cy includes id, location, heading, detection bounding etc

* Vector Map
L € RVix2xC1 ¢y includes location and road type etc

Output
- K future trajectories of the target agent 0 = {(pL, p2, - pHY,, pk = (xL,¥5)
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Challenges of Cooperative Motion Forecasting »j PROCESSING SYSTEMS

» Observations of the agents from different views may different due to various sensor

perspectives and configurations;

» In the cooperative scenario, there are multi-view observations of multi-agents, and the

redundant data need to be leveraged interpretably.

&

Ego-view Infra-view Veh-view
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(a) Existing Cooperative Method
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(b) Cooperative Trajectory Representations Paradigm

» Existing single-frame methods obtain the agent state at each frame individually, failing to sufficiently model

the historical behavior.

» Our research pioneers the exploration of trajectory-based feature fusion for cooperative motion forecasting.
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V2X-Graph Overview '.j. .
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» Forecasting-oriented cooperative trajectory representations of motion and interaction features.

« Graph-guided interpretable cross-view feature fusion.
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V2X-Traj Dataset 52

» The first real-world and public V2X motion forecasting dataset, containing V2V and V2l in every scenario.

» It comprises 10,102 scenarios in challenging intersections, with each scenario lasting for 8 seconds.
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Experimental Results —j 3

Cooperative method comparison on V2X-Seq

Method DenseTNT[13] HiVT[58] V2X-Graph
Vehicle-only PP-VIC[51] Vehicle-only PP-VIC[51] Vehicle-only PP-VIC[51] Feature Fusion
minADE Lol 1.84 1.28 1.12 1.16 1.12 1.05
minFDE 243 2.56 7 o) 1.97 2.04 1.98 1.79
MR 0.27 0.28 0.31 0.30 0.30 0.30 0.25

» Perception completion leads to error propagation, resulting in performance degradation of motion forecasting.

« V2X-Graph demonstrates its effectiveness with clear performance improvements over single-frame methods.
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Experimental Results '.j: 3
4 T
Graph-based methods comparison on V2X-Traj
Method Vehicle-only V2v V2I V2V&l
minADE minFDE MR minADE minFDE MR minADE minFDE MR minADE minFDE MR
DenseTNTI[13] 1.23 2.09 0.25 1.20 2.04 0.25 1.32 2.34 0.29 1.26 2.24 0.28
HDGT][19] 0.91 1.48 0.14 0.94 1.57 0.17 0.94 1.59 0.16 0.94 1.56 0.17
V2X-Graph 0.90 1.56 0.17 0.77 1.26 0.12 0.80 1.30 0.13 0.72 1.13 0.11

« V2X-Graph outperforms the compared methods by large margins in all cooperative settings.

» The method has the potential to achieve further improved performance in more views.
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Experimental Results 'f PROCESSING SYSTEMS

Qualitative Results
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Thanks for Watching!



