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closest fit in

the population

closest fit

« Red: Model space

 Blue-grey: Sample space

« Machine Learning: Find closest
model fit to realized sample

Figure replicated from Jerome H. Friedman, Robert
Tibshirani und Trevor Hastie: “The Elements of Statistical
Learning”
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Online Learning

realization t = 1 o

 Online Learning: Realized sample
changes, and so does the model fit

realizationt = 2 closestfitt =1
\
closest fit t = 2
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Reciprocal Learning

—

realization t = 1

realization f = 2 closestfitt =1

T - \

° closest fit t = 2
truth

Observation: Many algorithms
change the sample themselves
Sample changes in response to the
fit

Grey ellipse: restriction of sample
space in t through realization in t-1
Sample in t depends on model in t-1
and sample in t-1.
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Example: Self-Training
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Sketch of Self-Training in Semi-Supervised Learning
for Binary Classification ROY
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Reciprocal Learning: Outline of Paper
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Active
Learning

Bayesian e
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Convergence: Lipschitz Is All You Need

@ closest it = 1

closestfitt = 2

\\ p-@ closestfitt =3

“— A —p W closest fitt = 4

ﬂ.osest fitt =5

d(P”, Py < L-d((0, D), (¢, IP"))

Lipschitz-condition on
XP P

rather than

emprirical risk minimization P —
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Data Regularization

Realizationt = 1

()
truth

Realizationt = 2

restricted sample
space

— = e = e

e

closestfitt =1

closestfitt = 2

regularized fitt = 1

regularized fitt = 2
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Thank You for Your Attention!

Reciprocal Learning

Julian Rodemann Christoph Jansen Georg Schollmeyer
Department of Statistics Computing & Communications Department of Statistics
LMU Munich Lancaster University Leipzig LMU Munich
j-rodemann@lmu.de c.jansen@lancaster.ac.uk g.schollmeyer@lmu.de
Abstract

We demonstrate that numerous machine learning algorithms are specific instances
of one single paradigm: reciprocal learning. These instances range from active
learning over multi-armed bandits to self-training. We show that all these algo-
rithms not only learn parameters from data but also vice versa: They iteratively
alter training data in a way that depends on the current model fil. We introduce
reciprocal learning as a generalization of these algorithms using the language of
decision theory. This allows us to study under what conditions they converge.
The key is to guarantee that reciprocal learning contracts such that the Banach
fixed-point theorem applies. In this way, we find that reciprocal learning converges
at linear rates to an approximately optimal model under some assumptions on the
loss function, if their predictions are probabilistic and the sample adaption is both
non-greedy and either randomized or regularized. We interpret these findings and
provide corollaries that relate them to active learning, self-training, and bandits.

1 Introduction

The era ol data abundance is drawing Lo a close. While GPT-3 |]E[| still had to make do with 300 billion
tokens, Llama 3 was trained on 15 trillion. With the stock of high-quality data growing at a

much emaller rate (671 adeanate trainine data mioht run ant within thic decade 8% [T Clenerallv
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