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What is the problem of interest?

» Consider the general unconstrained minimization problem
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What is the problem of interest?

» Consider the general unconstrained minimization problem

min  f(x),

x€ERI
® Assumption 1: f(x) is strongly convex with p > 0.

® Assumption 2: The gradient Vf(x) is Lipschitz continuous with L > 0.

® Assumption 3: The Hessian V2f(x) is Lipschitz continuous with M > 0.

» Goal: Finding the global complexity of classic quasi-Newton methods for this setting
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Quasi-Newton Methods

» Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating
the function’s curvature and using a preconditioner

Xk4+1 = Xk — nkBEIVf(Xk)
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Quasi-Newton Methods

» Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating
the function’s curvature and using a preconditioner

Xk4+1 = Xk — nkB,:IVf(Xk)

» When By =~ V?f(xy) they mimic Newton's method
» Only use gradient to construct By = Still first-order methods

» Main ideas:
® Proximity condition: Keep By and By close
® Secant condition: Byi1Sx = yx where s = xpr1 — Xk, Yk = VI(xx1)—VI(xk)

Bky1 = argmin ||B — By|lv
st. Bsx=y,, B=0
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BFGS quasi-Newton Method

» Focus on the BFGS quasi-Newton method:

Bisks! Bk ykyd
Bit1 = Bik — . .

T T,
S, Brsk Sk Yk
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BFGS quasi-Newton Method

» Focus on the BFGS quasi-Newton method:

Bisks! Bk ykyi
Bit1 = Bik — . .

T T,
S, Brsk Sk Yk

» Define Hy, = Bk_l. Using Sherman-Morrison-Woodbury formula, we have

T T T

SkYk Yk Sk Sk S
Hipr = {1 = Hic | 1 - + :
Yy Sk Se Yk )
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State-of-the-art Results on Standard Quasi-Newton Methods

» Classic results have shown asymptotic local superlinear convergence for QN methods:
when ||x, — x*|| is small,
*
. Xk+1 — X
o s =l

k—oo ||xx — x*||
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State-of-the-art Results on Standard Quasi-Newton Methods

» Classic results have shown asymptotic local superlinear convergence for QN methods:
when ||x, — x*|| is small,
X1 — X*
o e =l
k—oo  ||xk — x*||
Local superlinear rate [Broyden-Dennis-Moré'73][Dennis-Moré'74]
Global and superlinear rate with exact linesearch [Powell'71][ Dixon'72]
Global and superlinear rate with inexact linesearch [Powell'76][Bryd-Nocedal-Yuan'87]
Many other works: [Griewank-Toint'82; Dennis-Martinez-Tapia'89; Yuan'91; Al-Baali'98;
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» However, they are all asymptotic and fail to provide an explicit convergence rate
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Recent Results on Quasi-Newton Methods

» Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton
methods
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Recent Results on Quasi-Newton Methods

» Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton
methods

» Rodomanov-Nesterov'20 and Jin-M'20 concurrently but using different Lyapunov
functions showed superlinear rates of the form O((1/vk)¥)

] \ cond. on ||xg—x*|| \ cond. on By \ rate \
. 1 ~ /2 1 \F
[Jin-M"20] 0 (%) Bo ~ V2f(xp) o(%)
k
[Rodomanov-Nesterov'20] @ (%) sz(x) = By =< /@sz(x) @) (\/ dl;(‘”)

Table: Definition k = L/

» These results are only local, it is unclear how to extend them into global guarantees
= The condition on By may not hold when ||xg—x*|| becomes small

» Moreover, there is no global result matching the linear rate of GD
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Contributions

» One of the first global non-asymptotic analysis of classic quasi-Newton methods
® Arbitrary initial point xo € R? and initial Hessian approximation By € SL_
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Contributions

» One of the first global non-asymptotic analysis of classic quasi-Newton methods
® Arbitrary initial point xo € R? and initial Hessian approximation By € Sd++

> Focus on the Armijo-Wolfe Line Search scheme: if dx = —B, 'V (x),

F (i + miedie) < F(xie) + oV (xi) | di,

V(i + midi) " die > BVF(xi) " di,

whereaandﬁsatisfy0<a<6<1and0<a<%.
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Summary of Results for BFGS with Armijo-Wolfe LS

’ Matrix ‘ Convergence Phase ‘

Convergence Rate

|

Starting moment

k -

By Linear phase (1 - %) V(By)
5 S k ~ _

By Superlinear phase (w(BO)’LCO:(u(BOHCOH) V(By) + GV (By) + Cok

k
Ll Linear phase (1 — %) 1

k
L Superlinear phase (d“*fo”) drk + Cok

k
wl Linear phase (1 — %) dlogk

K

wl Superlinear phase (w) (1+ Go)dlogk + Cok

» Here Gy := 3\/2

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari

(x0) — f(x4)) and W(A) :=

Global Convergence Analysis of BFGS

Tr(A) —

log Det(A) — d
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Notation and Definitions

» Introduce a weight matrix P € Si+ and define

8k = P_%gk, k= P_%Yk, 5 = P%Sk; B =P 2B :.
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. . ~ ~ B N ,\TB A AT
» The weighted BFGS update still holds Biy1 = B — 2k 4 T
5, Bk S Yk
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Notation and Definitions

» Introduce a weight matrix P € Si+ and define

B =P ig. =P iy, & =Pis, B.=P iBP :.

. . 2 2 B&3 B ey
» The weighted BFGS update still holds Bi+1 = Bk — % + L
5, By 5 S Yk
» P plays critical roles in the proof of non-asymptotic convergence rates.
= Choose P = LI to prove the linear convergence rates.

= Choose P = V?f(x.) to prove the superlinear convergence rates.
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Notation and Definitions

» Introduce a weight matrix P € Si+ and define

B =P ig. =P iy, & =Pis, B.=P iBP :.

. . 2 2 B&3 B ey
» The weighted BFGS update still holds Bi+1 = Bk — % + L
5, By 5 S Yk
» P plays critical roles in the proof of non-asymptotic convergence rates.
= Choose P = LI to prove the linear convergence rates.

= Choose P = V?f(x.) to prove the superlinear convergence rates.

» Define the following terms

BEC7 (G0 SO - GNP 7 S /L
&% Fa) — F(x)’ ElR —84
Tp—1
_ _ 8k By sk
cos(fk) = ———F—
18111 By &l
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Key Lemma

Lemma: [Jin-Jiang-M, 2024]

Let {xx}k>0 be the iterates generated by the BFGS method with AW line search.
Given a weight matrix P € Sd++, for any k > 1, we have

=t (1 ([pani) )

» Fundamental framework in the whole convergence analysis.
» Used for the proof of both linear and superlinear convergence rates.
» Need to lower bound the following three products

k—1 k—1 k—1 K1 0s2(d))
H ﬁ)iv H &iv H hia H T
=0 i—0 =0 =0 Mi
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Lower bounds on p, and ny

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method with Armijo-Wolfe line search, we have

Fxe) = Fxkr1) o N Yyl Sk

— —5—2>1-5, and f(xkr1) < F(xx)-
8k Sk 8k Sk
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Lower bounds on p, and ny

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method with Armijo-Wolfe line search, we have

f(xi) — f .
() T(Xk+1) > a, ykfk >1-5, and f(xkr1) < F(xx)-
—8) Sk —8) Sk
AT A
Given py := % and A, = _ygfzk

Lemma: [Jin-Jiang-M, 2024]

Then, for any k > 0 and any weight matrix P € SiJr

Pk > a, h>1-p
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Lower bounds on g

» Define Cx as the measurement of distance between x; and x,

o= g\/2(f(xk) ~f(x).

Lemma: [Jin-Jiang-M, 2024]

Recall the definition G, = %. Then we have the following results:

(a) If we choose P = LI, then gx > 2/k.
(b) If we choose P = V?f(x), then &, > 2/(1+ Cy)>.

» Depends on the choice of the weight matrix P € S9 | .
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200,
Lower bounds on %(0)

!

» Define the trace and log-determinant potential function for any A € Sﬁ’r+ as
V(A) := Tr(A) — log Det(A) — d.

» The Bregman divergence between matrix A and the identity matrix /.
» W(A) >0 and V(A) = 0 holds if and only if A= 1.

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method, we have that
(a) If P = LI, then [TAo¢ 500 > e~ V(Bo),

(b) If P = V2f(x,), then n,k “Leot0) 5 ~V(B)-E 5 G,

m
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Global Linear Convergence Rates

> For the global linear results we use P = LI, hence B, = (1/L)By

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point xo € R and any
initial Hessian approximation By € Si ., the following global convergence rates hold,

Fx) — F(x) _wie 2a(1 = B)\ ¥
F(%0) — (%) §<1‘e P ) !
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Global Linear Convergence Rates

> For the global linear results we use P = LI, hence B, = (1/L)By

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point xo € R and any

initial Hessian approximation By € Si ., the following global convergence rates hold,

F(x0) — F(x.) k

KR

Floa) = F(x) _ (1_e_wza(1—ﬁ))k,

Special Cases:

> By = LI Forall k>1 M<(1

_ 2a(1—ﬁ))k
f(x0)—f(x«) — K :

k

> Bo=pl: Forall k> dlogr  ffu=rlel < (1 20020)7,

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari

Global Convergence Analysis of BFGS
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Condition Number Independent Linear Rate

cos ( ,)

and §; by the ones obtained using P = V?f(x,)
V(Bg)+3 Z,-k:_ol Ci)
O fize T

» Replace the bounds for

fxi) — f(x)
f(x0) — f(x)

» Now by bounding Ef‘;ol C; using the previous linear result, we obtain the following

< (1—2a(1—5)e— , Vk>1.
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Condition Number Independent Linear Rate

cos ( )

and §; by the ones obtained using P = V?f(x,)
W(Bo)+3 Z,.k;Ol Ci)
T piz0 T

» Replace the bounds for

f(xk) — f(x)
f(x0) — f(x)

» Now by bounding Zf‘;ol C; using the previous linear result, we obtain the following

< (1—2a(1—5)e— , Vk>1.

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any xo € RY and any By € SiJr, if
k > V(By) +3CV(Bo) + ﬁ(‘on we have

Fo) — F(x) 2a(1 — B\ ¥
Fx0) — Flx) (1‘ ) '

> If we set By = LI, the rate holds for k > dk + (1 )C

> |If we set By = ul, the rate holds for k > (1 + 3Cp)d logk + ﬁ&m
Global Convergence Analysis of BFGS ‘ 15/21




Requirement for SuperLinear Rate

» To achieve a superlinear result we need tighter bounds: py > a and iy > 1 -3

» We show that if 7 = 1 satisfies AW conditions, tighter bounds are achievable.

Lemma: [Jin-Jiang-M, 2024]

If nx = 1 satisfies the conditions for Armijo-Wolfe LS, then we have

1+ Cy n 1
) Nk 2 7———~.
2 (1+ Ck)

Pk >1-—
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Requirement for SuperLinear Rate

» To achieve a superlinear result we need tighter bounds: py > a and iy > 1 -3
» We show that if 7 = 1 satisfies AW conditions, tighter bounds are achievable.

Lemma: [Jin-Jiang-M, 2024]

If nx = 1 satisfies the conditions for Armijo-Wolfe LS, then we have

1+ G 1
(1+ C}).

Lemma: (Informal) [Jin-Jiang-M, 2024]

For k > max {\U(Bo), ﬁ log g—f} the number of time indices for which n =1
does not satisfy the AWLS conditions is upper bounded.

16/21
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Global Superlinear Rate

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any xo € R? and any By € Sd++, we have

fou) = F) _ (w(éo) + (1+ G)VW(Bo) + (1 + CO)/i)k
f(x0) — f(x) k ’
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Global Superlinear Rate

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any xo € R? and any By € Sd++, we have

fou) = F) _ (w(éo) + (1+ G)VW(Bo) + (1 + CO)/i)k
f(x0) — f(x) k ’

» If By = LI BFGS achieves a rate of O((%)k)
» If By = pul BFGS achieves a rate of O((M)k)_

» Hence, the superlinear result for By = pl outperforms the rate for By = L/ when
Gologk < K.
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Numerical Experiments

» We focus on a hard cubic objective function, i.e.,

d—1
« A
F() = | 2 av' x = vihax) = By x | + S|,
12 \ o~ 2
and g : R — R is defined as

lw]? lw| <A,
_J3
g(w) = 2 2 1 A3

Aw® — A%|w|+ 34°  |w|> A,

where a, 3, A, A € R are hyper-parameters and {v;}_; are standard orthogonal unit
vectors in RY.

» This hard cubic function is used to establish a lower bound for second-order methods.
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Numerical Experiments

El

fa)—f(a)
Fl@o) )

107

——BFGS Inexact LI
—BFGS Inexact I
——BFGS Inexact T
——BFGS Inexact cl
——GD

102
o

300 600 900 1200 1500 1800 2100 2400 2700 3000
number of iterations k

(a) d = 100, & = 100.

——BFGS Inexact LT
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(c) d = 300, x = 100.

Figure: Convergence rates of BFGS with By = LI, By = ul, By =1, By = cl and gradient descent to

hard cubic objective function. ¢ = ”

randomly generated vectors.
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,With s = x — x1, y = VF(x) —

Vif(x1), and x1, x2 as two
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Numerical Experiments
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Figure: Convergence rates of BFGS with By = LI, By = ul, By =1, By = cl and gradient descent to
hard cubic objective function. ¢ = ”S” , with s = x — x1, ¥y = VFf(x2) — VF(x1), and x1, x2 as two

randomly generated vectors.
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Discussions on the line search complexity

» We proposed a Log Bisection Algorithm for finding a stepsize

» \We showed when we run BFGS for N iterations:

= then the total number of function and gradient evaluations is
O(N max{log d, log x, log Co })

» With more refine analysis, we can show that if N = Q(W(By) + (V(By) + ﬁ/ﬂ)) Go)

= then the total line search complexity becomes O(N).
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