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Introduction

Objective: Develop a new criteria to evaluate climate model performance

Spherical Convolutional Wasserstein Distance (SCWD)
Compares distributions of spatial fields
Finds regions where models struggle to create realistic
climatologies

Models: Physics-based simulations of the climate
Coupled Model Intercomparison Project (CMIP) goal:
understand sources and impacts of climate changes
45 models from CMIP6, 33 models from CMIP5
Historical experiment, global coverage, daily frequency

Observational data: Historical weather records
ERA5 Reanalysis for surface temperature
GPCP observations for total precipitation
NCEP Reanalysis included to test our method
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Introduction

Previous approach: global mean Wasserstein distance (GMWD)
Method from Vissio et al., 2020
Convert climate fields for each day into one
spatial mean

Cannot directly compare these time series!
Compare distributions of global means using
Wasserstein distance
Problem: global mean does not describe
the spatial variability in climate fields

Localized extreme events are smoothed out
Positive and negative biases in different
regions cancel out
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Methods

Proposal: incorporate more spatial perspectives via convolution
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Methods

Intuition: Spatial fields as functional data

Proposal: view spatial fields as functions of space f (s)
S2 is the set of latitude-longitude coordinates
L2(S2) is a convenient space of functions from S2 → R

Convolution Sliced WD (Nguyen and Ho, 2022) designed for image data
Generate one-dimensional slices using k × k kernels
Not designed to deal with continuous & spherical geometry of L2(S2)

Spherical CNNs (Cohen et al., 2018) adapts CNNs to continuous spherical data
We adopt a similar spherical convolution operation to generate slices

Use Wendland RBF as compact alternative to Gaussian kernel
Range parameter in our analysis: 1,000km
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Methods

Definition: Convolution Slicer

For a given location s ∈ S2, the convolution slicer takes a function in L2(S2) and takes a
weighted mean of data around location s. This local mean is an observation in R.

Convolution slicer cs(f )
For s ∈ S2, define the convolution slicer centered at s, cs : f ∈ L2(S2) → R as:

cs(f ) =
∫
S2

f (u)ϕ(|s − u|)du,

where ϕ is a radial kernel function.

Robert C. Garrett, Trevor Harris, Bo Li, Zhuo Wang SCWD for Climate Model Validation 6 / 13



Methods

Definition: Spherical Convolutional Wasserstein Distance

Local (univariate) distributions are obtained via the slicing operation. WD is calculated for
each pair of local distributions. SCWD is calculated as the global mean of the local WDs.

Spherical Convolutional Wasserstein Distance (SCWD)
Let P, Q ∈ P(L2(S2)), the set of probability measures on L2(S2). We define the spherical
convolutional WD as follows:

SCW (P, Q) =
(∫

S2
W (cs#P, cs#Q)2ds

)1/2
,

where W is the ordinary Wasserstein distance and cs#P, cs#Q are the pushforward measures
that represent the distribution of sliced data at each location s.
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Methods

Proposal: incorporate more spatial perspectives via convolution
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Analysis

Surface Temperature Results: SCWD
Reference model: ERA5 Reanalysis

Daily data from 1979-2005
Calculate SCWD from each CMIP model
output to ERA5

Lower SCWD = more similar to ERA5
CMIP6 models have (subtly) lower SCWD
than CMIP5 models
NCEP has lower SCWD than all models

Shows that no model perfectly represents
local distributions
Compare to previous approach
(GMWD)?
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Robert C. Garrett, Trevor Harris, Bo Li, Zhuo Wang SCWD for Climate Model Validation 9 / 13



Analysis

Surface Temperature Results: GMWD vs. SCWD
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Analysis

Surface Temperature Results: SCWD
GMWD shows models can replicate
variability in global mean up to a
reasonable expectation of error
SCWD shows that at the local level, there
is still ongoing improvement
SCWD is calculated as a mean over
location-wise WDs

View map for NCEP reanalysis and
FGOALS-s2 model
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Analysis

SCWD maps: NCEP and FGOALS vs. ERA5
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Overall: smooth maps are a good sign for our implementation
NCEP: relatively low distance everywhere, higher near poles and mountains
FGOALS-s2: very high distance off the coast of Antarctica

Follow-up reveals extreme lows in the winter due to issue with sea ice extent
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Analysis

SCWD conclusions

Key points:
Our rankings incorporate many spatial features to improve upon previous climate model
evaluation criteria
See paper for comparison to other criteria from climate and ML
Our maps can assist climate modelers in diagnosing model errors

Future work:
Further comparisons of climate models, additional scenarios such as future projections
Machine-assisted climate model tuning
Similar to square images (Nguyen and Ho, 2022), can use SCWD to train generative models
for 360o images
Paper includes a more general functional sliced WD framework which can be used for color
transfer/texture mapping on 3D models
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