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Background & Motivation
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What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

« Definition

Remote sensing images are captured from an overhead <
perspective by spaceborne or airborne sensors, which present @
unique viewpoints compared to natural images.

* Multiple Spectrums
o Optical RS (ORS): 400-700nm T
o Multi-spectral RS (MSRS): 400-2500nm 2
o Synthetic Aperture Radar (SAR): Imm-1m

« Key Applications E
o Environmental monitoring S
o Resource management g
o Disaster response s

Source: EUSI Database
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

« RS Data Diversity and Complexity

o Various data source & processing tech

o Various spectrums

o Various downstream tasks

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurlPS 2024
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

Learning robust and generic representations is desirable!

CVML Lab @ SMU SCIS, 2024-25
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Why not training from scratch?

Parameter Efficient Transfer Learning

108 — :
+ Self-supervised Training from Scratch el Domain
o Data scarcity in certain spectrums (e.g., SAR imagery) e 150K
1B
i i RS Domain -
o Constraints in model scale and data scale highaiorpl @
SpectralGPT-B

o Constraints in training GPU time
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Figure: Compare foundation models. The bubble figure shows model scale,
data scale and training time of five representative foundation models.
Numbers near to bubbles are training GPU-hour. Models from RS domain
uses less training GPU-hours compared with natural vision domain.
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Why not training from scratch?

Parameter Efficient Transfer Learning

We propose to transfer existing foundation models to RS domains.
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Why do we need parameter efficient?

Parameter Efficient Transfer Learning

* Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

o Adaptation between RS spectrums

« Zero-Shot and Fine-tuning

o Fine-tuning suffers from 1) catastrophic forgetting, 2) long training
time, and 3) high VRAM usage.

o Even zero-shot outperforms fine-tuning.

« Parameter Efficient Transfer Learning (PEFT)
o LoRA - Low Rank Adaptation

o Both fine-tuning, zero-shot and PEFT suffers from long-tailed
distribution issue.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurlPS 2024
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Figure: Performance of Natural to ORS adaptation setting.
The debLoRA achieves highest performance, especially for tail
class.
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Insights & Design

Key Observations ® Framework ¢ Core Components ¢ Algorithm Explanation
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—_—
o SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

We observe that representation space learnt by PEFT methods are biased.

Key Observation - Biased Representation Space

- Biased Representation Space

@)

[2] We define feature space Z as biased if Vol(Z,) > Vol(Z,), and 3 z, € Z: P(z, € Z,) > P(z; € Z;), where Z,, and Z, denotes the feature spaces of
head and tail classes respectively, Vol(+) denotes feature space volume, and P () denotes the probability distribution predicted by the model.

When learnt on long-tailed data, LoRA’s adapted
feature space of LoRA is biased![2].

Validation samples of head class are mostly
correctly classified.

Validation samples of tail class are wrongly
classified as head class.

Key Challenge: Train/Val distribution mismatch
for tail classes.
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Figure: Feature distribution of training samples. For clearer visualization,
we pick representative head class “Helicopter” and tail class “Ship” from

DOTA v1 dataset as an example.
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Our Framework involves three core components.

Framework of Our Approach

» Three key components
o Feature clustering — Unsupervised clustering to find less biased prototypes.
o Feature calibration — Use less-biased prototypes to calibrate tail class features.

o debLoRA learning — Learn a LoRA module to capture this de-bias mapping.

Feature less-biased clusters Feature de-biased space
Clustering > Calibration =

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurlPS 2024

Learning
de-biased LoRA

CVML Lab @ SMU SCIS, 2024-25



SINGAPORE MANAGEMENT
UNIVERSITY

\T SMU

We first found balanced prototypes within feature space.

Feature Clustering

» Feature clustering

o We conduct K-Means clustering over training samples’
feature space.

N
min min||zZ; — ,S. L. ynNge, =2 —,
i zi_l T Hi K=K-p

where u; and n;, denote the center and size of the k-th
cluster, respectively.

o Some cluster centers are contributed by both head and
tail classes, and hence is less biased (e.g., clusters 2 and
3).

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurlPS 2024
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We secondly construct less biased centers and calibrate features.

Construct De-Biased Center

« De-Biased Center

o We calculate de-biased representation center for

each tail class:
n

N 2: k
Uec = Wi Uk Wi = —,
nC
k

here weight w;, proportion to the fraction of class ¢
samples in k-th cluster.

o This ensures that the de-biased center [i. is not
dominated by head classes

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurlPS 2024
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We utilize LoRA to capture the de-bias mapping.

Feature Calibration

* Tail Class Calibration Feature Calibration & Learn
o De-Biased Center are closer to validation samples. Ship
10 Helicopter
o We calibrate tail class features z by moving them close to 5 Kt‘lebLoRA p
de-biased center (i : Ve
Z=az+ (1—-a)f, 0 % Original Biased Center
where a = min(l,%) empirically. -3 * De-Biased Center
. -10
* Learning debLoRA

o We learn an LoRA module with tra|n|n§ objective -10 0 10
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