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Summary

Work about embedding supervised classifiers in Poincaré disk model
Three separate contributions:

o Embed a single prediction in Poincaré disk model

o Embed a decision tree DT (or a boosted ensemble)

o Correct a downside of Poincaré disk model for near-border err
Code, etc: https://richardnock.qgithub.io/



https://richardnock.github.io/

Embed a single prediction

e In supervised learning, mapping posterior prediction — real-valued prediction
done by (canonical) link y of a loss; |y|= confidence. Ex: log-loss
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e 2D Poincarée disk B = model of hyperbolic geometry (convenient for tree-based
representations), with distance to origin of z € B given by

1
dp(z,0) = log (1 + r) with  ||z|| =17
-

e Suggests embedding a single prediction p by z € B with||z|| = [2p - 1]

) with r=|2p—1| and p = posterior estimation
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From single to many tree-based predictions (DT)

(Supervised) benefits of Poincaré disk include: equidistant isolines with respect
to prior p; center of disk is the worst possible prediction information-wise; the

e

closer to the disk border, the higher the confidence / \\\

A decision tree DT has priors at each node so
it is natural to want to embed the full tree
(nodes + architecture)...
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A direct embedding of a DT is messy

e Indeed, confidences are not monotonic from the root to a leaf in general...
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Nice direct embedding of a Monotonic DT

e ..sSO we extract its monotonic subtree = Monotonic Decision Tree (MDT), where
monotonicity is ensured. Then a modified Sarkar algorithm embeds full MDT

- Nock et al,,
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A known numerical issue with Poincare disk model

e The best parts of a (M)DT embedding are close to the border. In addition to
being poorly readable, numerical approximation issues can “push” the best
confidences to the border, giving a false sense of optimal confidence
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e We fix the issue by replacing Riemann summation
(at the core of integrals, hence distances),
by a tempered summation. “Stretches” visualization
near border while keeping hyperbolicity




A known numerical issue with Poincare disk model

e The best parts of a (M)DT embeddlng are close to the border In addition to
being - = =
confidl = Includes a generalization of Leibniz-Newton’s

fundamental Theorem of calculus

= Simple extension of many properties of integration
= Gives interesting properties when applied to other
models of hyperbolic geometry (e.g. Lorentz’) and
beyond, to other integral based “distances” (Bregman

divergences, f- dlvergences IPMs, etc) See paper.
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near border while keeplng hyperbolicity

e We fix
(at the
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