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RL4VLM: training generative models as decision-making agents

. Batch Observations & Rewards
Environments

You are a blackjack player. You are observing the current game
I state, you can choose between ['stand;, 'hit'].
concat Please first describe the current state, then output the action.

Target: 3

Current: 0
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Vision Language Model  Fine-Tuning

"thoughts": "I have 20 points in total. The dealer has at least 10
points. My total points are large, | should stand."
"action": "stand"

Actions
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RL4VLM: vision-language based evaluation tasks

Tasks requiring fine-grained visual recognition (a) - (d)
Tasks requiring visual semantic reasoning (e)

Target: 5

Current: 1
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(d) Blackjack

(e) alfworld



RL4VLM: vision-language based evaluation tasks

e Examples of transitions with text actions | Target: 5

Current: 1

(a) NumberLine (b) EZPoints (c) Points24 (d) Blackjack (e) alfworld

Target: 3 Target: 3
—> "action": "4+" —
Current: O Current: 1
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e Leveraging domain knowledge



RL4VLM: formulating multimodal generative agent for RL training

e Each state contains a visual and textual input

e Parse text outputs into executable actions
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RL4VLM: leveraging the domain information via CoT reasoning

e Each state contains a visual and textual input
e Parse text outputs into executable actions

-> In context learning for domain knowledge

-> CoT reasoning in output text

and text as RL states
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RL4VLM: an example of in context prompt and CoT output

CoT prompt v'" for task M
You are trying to solve a task M. You are observing the current status of the task. The

action space of M is {text version of all legal actions a € A}. {Description of the task}.
Your response should be a valid json file in the following format:

{

"thoughts": "{first describe the current status of the task, then think carefully about which

action to choose}",
"action": {Choose an action "a € A"}

}

Formatted text output v"

{

"thoughts": "I am solving task 7, given the current status of the task, I should choose a.",

nm, n "

"action": "a

}
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RL4VLM: improving decision making capabilities of generative agents
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RL4VLM: improving decision making capabilities of generative agents
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e Our method enables 7b models to surpass the performance of
o Commercial models: GPT4-V, Gemini
o Supervised learning based method (llava-7b-1.6)



RL4VLM: the importance of CoT reasoning
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RL4VLM: the importance of CoT reasoning
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CoT reasoning enables efficient RL
training by exploiting domain knowledge

CoT reasoning ]

.
5



Outline

e Conclusions and Directions for Future Research



Conclusions

e First end-to-end RL training framework for vision-language generative agent
o Performance improvement
o Leverage domain knowledge for efficient training via CoT
o  Without human feedback



Limitations

Fail to improve performance when
o Backbone model is not strong enough
o Task is too hard

Formula:
8%¥(9-2-4)
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