=i WashU
UC San Diego

Background

Safe Region: C = {x:h(x) =2 0} S X
Positive invariance: x(t) € C € X for
allt > 0, ifx(0) € C.

Safety: positive invariance of a given
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safety region C.

Dynamics: x(t) = f(x(t)) + g(x(t))u(t) () =
Control Barrier Function (CBF) b(x) is a smooth function thaty
evaluates the ‘safety’ of the system. Let D = {x: b(x) = 0} € C.

Function b(x) is a CBF if there exist U and class-x function &, s.t.

D(fam) + g(x@®)u®) = —a(b(x()))

However, u does not exist if Z—Z g(x(t)) = 0 and Z_Z f (x(t)) < 0.
Exact Verification of ReLU NCBFs [1]

Nagumo's Theorem The closed set D 1s positive invariant
iff, whenever boundary states x € 9D, u € U satisfies

db
—(F() + gu) 2 0.
Intuition: Piece-wise Linearity of ReLLU

Problem Studied

Given a system (1), synthesize a ReLU NCBF bg(x) s.t.

* Feasible: for all x € D, there exist u satisfying (2)

* Correct: D € C (safe region)

Challenge 1: Scalability for high-dimensional systems and deep NNss.
Challenge 2: Synthesize NCBFs satisfying conditions

* Loss may not converge to zero

e Hard to obtain a formal verification
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Synthesis with Efficient Exact Verification (SEEV)

Goal: Synthesize NCBFs to be feasible and correct.

Training dataset J°: initialized by uniform sampling over X.

L. correctness regularizer enforces the correctness of the NCBF.

\1»

S Ly feasibility regularizer Lr = [|[u — T (OII5 + 1
where 1 1s the slack variable for the safety filter [2]
ml%nllu Thnom (x)”z

st WESHI(FER)+gEu)+r =0

Ly Boundary activation regularizer limits the number of
hyperplanes & hinges by penalizing the dissimilarity

Step | Identify boundary samples; Step 2 Clustering;
Step 3 Penalize dissimilarity
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Efficient Exact Verification for ReLU NBFs

How to compute the db/dx efficiently?
* Derivative of a NCBF can be characterized by activation sets S.
* Derivative of a NCBF 1n one activation set S 1s linear.

(Enumerate S)
(Linear Program)

So=[110 ... 10]

= [11{1} ... 10]
= [1i0/0 .. 10
=110 ..[0{0

The activation of ReLU neuron flips

Binary Search
Find S, containing
b(x) =0

| Search neighbors in (51,52, -, Sm} | Find the sets of §
a BFS manner and X (S)

Features:
* Enumeration: (1). Only rely on linear program; (i1). CPU only; (111) Multi-process enabled
* Verification: (1). Efficient; (11). Exact verification with SMT solver [3]
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Experiments

We consider the Darboux, Obstacle Avoidance (OA), hi-ordg and Spacecraft
Rendezvous (SR) problems and compared our approach with SMT-based
verifiers.

Tablel: Comparison of N the number of boundary hyperplanes and C coverage of the safe
region D of NCBF trained with () and without (0) boundary hyperplane regularizer

Case L M N, Co Nr—1 pr=1 Nr=10 pr=10 Nr=50 Pr=50

8 26 89.46% 25 0.996 233 0994 133 1.006
16 116 83.74% 119 1.012 111 1.005 98 1.055
8 40 91.94% 38 0.988 36 0993 13 0.937
16 156 87.81% 170 0971 147 1.003 64 1.038

8 2868 98.58% 2753 1 1559 1 418 1
8 6371 98.64% 6218 1 3055 1 627 1
16 N/A N/A 204175 N/A 68783 N/A 13930
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Table2: Comparison of verification run-time of NCBF in seconds.

M N th
15 2.5s
15 3.3s

16 86 0.41s

8 15 0.39

16 136  0.65s
5778  20.6s

8 73 0.54s
16 3048 11.8s
16 3984 22.4s

8 2200 7.1s
8 4918 45.8s

SEEV outperforms the LiRPA-based method
proposed in the baseline [23]
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SOTA SMT-based Methods
are not directly applicable
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