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Learning from Preferences

• (Graphics) Material Design [Brochu et al., NeurIPS 2007]


• Reinforcement Learning [Christiano et al., NeurIPS 2017]


• Small Drug Molecules [Choung et al., Nature Communications 2023]


• LLM Question answering [Ouyang et al., NeurIPS 2022]


• Text Summarisation [Stiennon et al., NeurIPS 2020]


• Image Generation [Xu et al., NeurIPS 2024]
Reproduced from: Choung, Oh-Hyeon, et al. "Extracting medicinal 

chemistry intuition via preference machine learning." Nature 
Communications 14.1 (2023): 6651.

Infer a latent utility function     over options    from human stated preferences.fw xi



Choice modelling
Prior work

Model 
Binary Choice Model

Bradley-Terry

Challenge: human biases incl. context effects

p(y = x1 |x1, x2) = σ (fw(x1) − fw(x2))
p(y = xi |x1, …, xn) ∝ exp (β fw(xi))



Choice modelling
Context effects

Contextual preference reversal: a change 
in preference between two options due to a 
change in further options.
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Figure 1: In one type of contextual preference reversal experiment two options
A and B are each described in terms of two features, for example a probability
p and value v. A has a higher probability and B has a higher value. A has the
same expected value as B and they are therefore both on the same line of equal
expected value (the dotted curve). A decoy D is placed in the rectangle to the left
and below either A or B (B in the figure). The decoy in the figure is dominated
by B but not by A.

normative theories of human choice. In particular, many have suggested that preference reversal

phenomena indicate that people do not make independent evaluations of each option (Tversky

& Simonson, 1993; Huber et al., 1982; Simonson, 1989; Ariely & Wallsten, 1995; Simonson &

Tversky, 1992; Summerfield & Tsetsos, 2012; Louie & Glimcher, 2012; Tsetsos, Usher, & Chater,

2010). Preference reversals, suggest that the values of each option are influenced by additions

to the set of available options, which constitutes a violation of the Independence from Irrelevant

Alternatives (IIA) axiom required in many value maximising models (e.g. Luce (1959). As its

name suggests the axiom demands that a preference between two options is not changed by the

addition of an option to the set of what is available.

There is a common view that contextual preference reversals are evidence that people vio-

late value maximisation. This belief has survived for at least 20 years. According to Tversky

and Simonson (1993, p. 1179) “The standard theory of choice—based on value maximization—

associates with each option a real value such that, given an o↵ered set, the decision maker chooses
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Figure: Attraction effect

Howes, Andrew, et al. "Why contextual preference reversals maximize expected value." Psychological review 123.4 (2016): 368.

Wollschlaeger, Lena M., and Adele Diederich. "Similarity, attraction, and compromise effects: Original findings, recent empirical

observations, and computational cognitive process models." The American Journal of Psychology 133.1 (2020): 1-30.




Choice modelling
Prior work

Model 
Binary Choice Model

Bradley-Terry

Challenge: human biases incl. context effects

Bower & Balzano, 
ICML 2020

Tomlinson & Benson, 
SIGKDD 2021

CRCS (ours) Computationally rational

p(y = x1 |x1, x2) = σ (fw(x1) − fw(x2))
p(y = xi |x1, …, xn) ∝ exp (β fw(xi))

p(y = xi |x1, …, xn) ∝ exp (wTxτ(C)
i )

p(y = xi |x1, …, xn) ∝ exp ((w + AxC)Txi)



Contributions

1. Show that computational rationality theory can improve inference from 
and prediction of human behavior, specifically for learning from preferences.


2. Introduce CRCS, a surrogate of an existing cognitive choice model that 
allows for practical inference


3. Extend CRCS into LC-CRCS, which can learn cross-feature effects 
between options.
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The original cognitive model
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ũi
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(a) Our choice model, originally introduced in [19],
posits that humans make utility-maximizing choices
(for some utility function parameters w and choice
model parameters ω) based only on observations
(ũ, õ). The options x1, . . . , xn and their true utili-
ties u1, . . . , un are not observed.
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ũ(l)
i y(l)
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(b) An outside observer observes a set of choices y(l)

made over associated options x(l)
1 , . . . , x(l)

n . From
this data set, the objective is to infer the parameters
w and ω. The noisy observations (ũ(l), õ(l)) that are
central to each of the user’s choices are internal to the
user and are therefore unobserved.

Figure 2: Graphical models of (a) our cognitive choice model and (b) the corresponding preference
learning problem.

Figure 3: Reversal rate minus inverse reversal rate as a function of ω2
calc on Range-Frequency

conditions for q̂ ("surrogate") and for the original implementation of Howes et al. [19] ("surrogate").
For q̂, we show the mean ± std. dev. for 10 models trained with different seeds. The “reversal rate"
is measured by calculating the rate at which the Pareto-optimal decoy-dominating option is chosen.
To control for random variation we subtract from this the “inverse reversal rate", the rate at which
the other Pareto-optimal option is chosen. For non-zero values of ω2

calc, we see that though q̂ is less
sensitive to ω2

calc, it reproduces the range of reversal rates of the original model.

A Human data experiments

A.1 Priors

This section provides details on how the CRCS model was trained for the choice tasks corresponding
to the Hotels, District-Smart, Car-Alt and Dumbalska datasets. In order to train our CRCS model on
a new choice task, we need to define three priors: a prior over sets of options p(x), a prior over utility
function weights p(w), and a prior over choice model parameters p(ε).

The prior over sets of options p(x) is by far the most important prior for successfully training the
CRCS model. It is clearly important that this prior matches the distribution of choice sets we expect
to see for the choice task we target. However, it is even more important to ensure that that prior has
proper support across the entire space of option sets. From equation 2 we see that in order to predict
the true utilities of the options x, û essentially has to infer the option set x (which it does not observe)
from the observations ũ and õ. It can only learn to do this well it if during training we can expect it
to encounter all x that could have resulted in ũ and õ.

The priors p(x) for these tasks were defined as follows:

• For Hotels we had access to the set of 200 hotels the original authors had used to build their
study. Thus, we generated options triplets from the prior by uniformly sampling (without
replacement) three hotels from this set.
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y = argmaxxi∈{x1,…,xn} 𝔼[ui | ũ, õ, w, θ]

Choices are utility-maximizing under 
observational bounds. [Howes et al. 2016]


Options not directly observable. Instead, noisy 
observations:


: noisy utility value


: noisy pairwise attribute value comparisons

A computationally rational choice model

ũ

õ

Howes, Andrew, et al. "Why contextual preference reversals maximize expected value." Psychological review 123.4 (2016): 368.




Surrogate trained to predict expected utility of options:

Making it tractable

y = argmaxxi∈{x1,…,xn} 𝔼[ui | ũ, õ, w, θ]

ℒutil( ̂u ) = 𝔼p(w,θ,u,ũ,õ) [∥ ̂u (ũ, õ, w, θ) − u∥2]

A computationally rational choice model



Tractable Preference learning with CRCS

Outside observer infers parameters from observed 
choices.


But, associated noisy observations        are latent.
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(a) Our choice model, originally introduced in [19],
posits that humans make utility-maximizing choices
(for some utility function parameters w and choice
model parameters ω) based only on observations
(ũ, õ). The options x1, . . . , xn and their true utili-
ties u1, . . . , un are not observed.
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(b) An outside observer observes a set of choices y(l)

made over associated options x(l)
1 , . . . , x(l)

n . From
this data set, the objective is to infer the parameters
w and ω. The noisy observations (ũ(l), õ(l)) that are
central to each of the user’s choices are internal to the
user and are therefore unobserved.

Figure 2: Graphical models of (a) our cognitive choice model and (b) the corresponding preference
learning problem.

Figure 3: Reversal rate minus inverse reversal rate as a function of ω2
calc on Range-Frequency

conditions for q̂ ("surrogate") and for the original implementation of Howes et al. [19] ("surrogate").
For q̂, we show the mean ± std. dev. for 10 models trained with different seeds. The “reversal rate"
is measured by calculating the rate at which the Pareto-optimal decoy-dominating option is chosen.
To control for random variation we subtract from this the “inverse reversal rate", the rate at which
the other Pareto-optimal option is chosen. For non-zero values of ω2

calc, we see that though q̂ is less
sensitive to ω2

calc, it reproduces the range of reversal rates of the original model.

A Human data experiments

A.1 Priors

This section provides details on how the CRCS model was trained for the choice tasks corresponding
to the Hotels, District-Smart, Car-Alt and Dumbalska datasets. In order to train our CRCS model on
a new choice task, we need to define three priors: a prior over sets of options p(x), a prior over utility
function weights p(w), and a prior over choice model parameters p(ε).

The prior over sets of options p(x) is by far the most important prior for successfully training the
CRCS model. It is clearly important that this prior matches the distribution of choice sets we expect
to see for the choice task we target. However, it is even more important to ensure that that prior has
proper support across the entire space of option sets. From equation 2 we see that in order to predict
the true utilities of the options x, û essentially has to infer the option set x (which it does not observe)
from the observations ũ and õ. It can only learn to do this well it if during training we can expect it
to encounter all x that could have resulted in ũ and õ.

The priors p(x) for these tasks were defined as follows:

• For Hotels we had access to the set of 200 hotels the original authors had used to build their
study. Thus, we generated options triplets from the prior by uniformly sampling (without
replacement) three hotels from this set.
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ℒpol( ̂q ) =𝔼p(w,θ,x,ũ,õ) [−ln ̂q (argmax{x1,…,xn} ̂u (ũ, õ, w, θ) x, w, θ)]

õ, ũ



LC-CRCS

LCL can learn cross-feature effects through 

exp ((w + AxC)Txi)

̂q (y x, w, θ)
CRCS

̂q (y x, w+AxC, θ)
LC-CRCS

AxC

LC-CRCS introduces the same mechanism in CRCS 



Experiments



Inference and Choice Prediction

LC-CRCS is a better predictor of real human choices
Table 1: Choice model NLLs on human choice data sets. Bolded digits indicate a significant (p <
0.01) improvement over baselines (BT, BB, LCL).

Dataset Bradley-Terry Bower & Balzano LCL CRCS (ours) LC-CRCS (ours)

Hotels 573 573 553 536 536
District-Smart 3432 3432 3305 3371 3276
Car-Alt 7414 7416 7290 7322 7345
Dumbalska 103669 103711 100683 100450 99147

4 Experiments

We first validate the proposed CRCS model by comparing its results with the original computationally
rational choice model by Howes et al. [19]. Then we compare the proposed CRCS model and our
LC-CRCS variant with three baselines on human choice data, and finally study the performance
of the model on three case studies: car crash structure design, water drainage network design, and
retrosynthesis planning.1

We evaluate our proposed CRCS model on four datasets of human choices. These datasets are
large sets of choices (x(l), y(l)) collected from human participants. The District-Smart dataset [38]
contains pairwise preferences over voting districts, where participants were asked to choose the
district they felt was most compact. The features extracted for each district are six geometric measures
identified by the original authors as good measures of compactness. The Car-Alt dataset [39] contains
choices between six hypothetical alternative fuel cars. Each car has 21 features, including size, range,
operating cost, etc. We also use a dataset collected in [40], which we will call the Hotels dataset,
where in a user study participants were asked which of three hotels they preferred. The hotels were
collected from a booking site and had as features the price per night and average review rating. For
each participant, a choice was collected on one of six sets of options constructed to target three
known context effects: attraction, compromise and similarity. Lastly, we use the data collected by
Dumbalska et al. [36] on a property task, which we will refer to as Dumbalska. Here, participants
ranked three properties in order of best to worst value. For our purposes, we will treat the top-ranked
item as the choice. Value was defined as the given rental cost minus the value participants thought the
house was worth (which had been elicited in an earlier stage). For each participant, responses were
collected on a large collection of choices, specifically engineered to span the entire range of potential
context effects. Thus, unlike the other datasets, we have multiple recorded choices per participant.
This allows us to make inferences per individual, rather than at the population level, and evaluate how
well our choice models fit the preferences and context effects exhibited by individuals.

4.1 Validation of the CRCS model: risky choice tasks with preference reversals

In this experiment, we validate our CRCS model against the original implementation of Howes et al.
[19] on a risky choice task. In this task, a user is presented with a set of three options, each of which is
a pair (pi, vi) consisting of a probability pi and a payoff vi. Upon selecting option i, the user receives
payoff vi with probability pi, meaning that each option has expected payoff f(pi, vi) = pi · vi.
Comparing expected option values predicted by û with the Monte Carlo estimates used in [19], we
find that on sets of three options both generally agreed on the relative magnitude of the utilities, and
that they agreed on the ranking of the utilities in 92.277%± 0.165% (Agresti–Coull) of cases. Next,
we verified q̂’s ability to predict contextual preference reversals. This was tested on Range-Frequency
decoy conditions [19] where two “Pareto-optimal" options with equal utility are presented along
with a decoy option with slightly lower utility which is dominated by one of the other two options.
Preference reversals – specifically, increased likelihood of choosing the Pareto-optimal option that
dominates the decoy – have been observed in humans and are predicted by the original model.
Figure 3 in the appendix shows that q̂ reproduces the range of reversal rates of the original model.

1Implementation available at https://github.com/AaltoPML/Preference-Learning-with-a-
human-like-model-of-choice.
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Table 2: Consistency of inferred utility function with separately collected rankings on District-Smart.
Bolded digits indicate a significant improvement over baselines (BT, BB, LCL).

Dataset Bradley-Terry Bower & Balzano LCL CRCS (ours) LC-CRCS (ours)

District-Smart 0.162 0.217 0.286 0.622 0.525

4.2 Evaluation on static human choice data

In this set of experiments, we evaluate each models’ ability to generalize to unseen data. We
compare our proposed CRCS model and the LC-CRCS variant against three baselines: vanilla
Bradley-Terry, the variant proposed by[37] (referred to as Bower & Balzano) and LCL [20]. On
four different datasets, we infer the parameters for each model on a training set of observed choices
{(x(l), y(l))}ml=1 and calculate the negative log-likelihood (NLL) of a held-out test set under the
inferred parameters. Inference was done using gradient descent on the NLL of the training set. We
performed cross-validation, and report the sum of the test sets’ NLLs across the folds. For Hotels,
Car-Alt and District-Smart we split the choice data across 50, 20 and 10 folds respectively. By
evaluating each choice model on each test fold, we obtained paired observations (one per condition)
for each test fold, allowing us to perform a Wilcoxon rank test across the folds to test significance.
On Dumbalska, we look at how well the choice models can fit to individuals, and thus perform
cross-validation for each participant individually. We then treated the sum of the NLLs of the test
sets per participants as individual measures, and tested significance using a Wilcoxon test across
the participants. Following prior work, we used a linear utility function in all choice models in all
datasets.

Table 1 shows the total NLL achieved by each model on each dataset. We observe that our proposed
LC-CRCS model achieves the highest NLL on Hotels, District-Smart and Dumbalska. This difference
is significant (p < 0.01) in all three cases. On Car-Alt, we see that LCL performs better than all other
models, with the difference being significant (p < 0.01) for all except the CRCS model (p > 0.2). We
theorize that the poor performance of the CRCS model on Car-Alt is due to insufficient option data to
train û on (see Appendix A.1), leading to poor estimates of expected utility and therefore poor choice
predictions.

4.2.1 Evaluating the inferred utility function

As part of the District-Smart human subject study, Kaufman et al. [38] collected rankings on six
sets of districts from small groups of participants. Ranking such large sets is quite difficult, and we
should expect these rankings to be quite noisy. However, like the binary choices that were collected,
these rankings are indicative of people’s true preferences, and thus should be consistent with any
ranking of the same districts implied by the utility function we infer from the binary choices. To test
this, we use our choice models to infer utility parameters on the entire set of binary choices. For
each of the six sets, we then measure – using Kendall’s ω [41] – how consistent the ranking implied
by the inferred utility parameters is with the ranking collected in the study. We report the average
consistency across all six sets. Because the loglikelihood of CRCS and LC-CRCS is not convex, we
repeat this procedure 25 times, starting from different points, to control for the effect local optima
may have on the inferences. We test significance using a Wilcoxon test across the six sets of rankings.

Unlike the previous experiment, during inference we regularized the choice model parameters of
LCL, CRCS and LC-CRCS. This was essential to infer utility parameters that were consistent with
the collected rankings. For LCL we used the L1 matrix norm of the weight adaptation mechanism’s
parameter matrix as a regularization term. The L1 norm enforces sparsity and thus encourages
LCL to only fit to the most significant context effects [20]. For CRCS and LC-CRCS we used the
probability of the choice model parameters under a chosen prior as the regularization term. Using our
understanding of the model this allowed us to encode specific prior knowledge into the regularization.
More details can be found in Appendix A.3. From the results in Table 2 we observe that both CRCS
and LC-CRCS infer utility parameters that are significantly (p < 0.001) more consistent with the
collected rankings than the baselines. LC-CRCS performs slightly worse than CRCS, though the
difference was not yet significant.
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LC-CRCS and CRCS infer utility that better aligns with human preferences



In-silico experiments show practicality 
of CRCS for real design problems:


• Structural design


• Drainage network design


• Retrosynthesis planning

Active Inference and Assistance

CRCS and LC-CRCS are more data-
efficient in an active learning setting.



Conclusion

• Show that computational rationality can improve learning from preferences 
through strong inductive biases.


• Introduce CRCS, a computationally rational surrogate for human choice 
making which enables practical inference.


• Extend CRCS to LC-CRCS, which can learn additional cross-feature 
effects.


• Show experimentally that CRCS and LC-CRCS have significantly better 
utility inference and choice prediction compared to baselines.


