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Setup and Notations

Network Structure: We consider a fully-connected network with
weights initialized using a standard random Gaussian distribution. The
network structure is defined as follows:

aW(x) = \/7 (W( )x + b0 ))
\/7W’1) o I(x)), 1=23,...,L; (1)

f(x:0) = Wa(alV(x)),

Network Width and Initialization: The network width m satisfies the
following bounds:

ecm<min{m;:1=0,1,...,L} <max{m; : =0,1,...,L} < Cm

for some positive constants ¢ and C. The elements of matrices W and
vector b are all initialized as standard Gaussian random variables.



Setup and Notations

Distribution of data: For sample pairs {(x;, yi)}i=1,. .n, We
assume that they follows:

yi = f7(xi) + €i, (2)

where f* is the real function and {¢;} are the noise terms. The
assumption on * and {¢;} will be stated later.

Training Procedure: Given training samples {(x;, ¥i)}i=1,...n,
where x € X € R and X is a domain with smooth boundary, the
network is trained under a Mean Squared Error (MSE) loss
function through gradient flow:



Motivation

When the network is wide enough, we observe that the L-2
generalization error relationship between Mirrored Initialization
and Standard Initialization is:

* NN, (0 *
IENN — 712 AN (o — N2

» NN: Network trained from f\N (Standard fully-connected
initialization) at time t.

> ftNN’(O): Network trained from initial output 0 (Mirrored
fully-connected initialization) at time t.
> f*: goal function of the regression problem.

It shows that the non-zero output works as introducing an implicit
bias in the training process.



Motivation (Continued)
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Mirroifed fully-connected Initialization, with Initial output f(x) = 0

Figure: Mirrored fully-connected initialization, with initial output f = 0.



Neural Tangent Kernel Theory

The Gradient Flow (GF) of the network is:

n

NG = S VAN ), VoG (Fx) ).
i=1

When network is wide enough (m — o0), it falls into the NTK
regime [1, 2|:

lim (V5N (), VoM () = KN (x, )

In this way, the GF of network can be approximated by KGF
(Kernel Gradient Flow):

d 1¢
a;rtNTK(X) = Z KNTR G ) (VTR () — i)
i=1



Methods

The generalization ability of KGF predictor depends on the
smoothness of the regression function. Denote by H the RKHS of
kernel k(-,-). For f* € [H]*:

» The generalization error of KGF is about @(n_d%l), where 3
is the EDR (eigenvalue decay rate) of kernel k(-,-):

Ni(k) =< i7P. (3)

. . d 1
Especially, the EDR of NTK is %.



Key Intuition

Key point: Calculate the Smoothness of the Implicit Bias Caused
by Initial Output Function
The revised goal function f** converges to a GP (Gaussian Process):

£ — fr fE)NN = £ fGP ~ gz])(f*’ KRF)

If £* is smooth, the smoothness of f** depends on the smoothness of
f6P. Denote by HNTK the RKHS with respect to NTK. Our results
shows that (Theorem 4.2)

3
P(FCP NTKysy — >
(FF € () =0, s> =
3
]P)fGP NTKs:1
( eH ") ,s<—dle

In this way, we can directly derive the generalization error of the KGF
predictor, as well as the network when width m is large enough.



Main Results

Generalization Ability of Network under Different
Initialization

1. Assumption 1: Source condition (Smoothness of goal function)
f* € [HNTK]S, where s > 335

2. Assumption 2: Noise The training samples {(x;, y;)}7_, are
generated by y; = f*(x;) + €¢; where the noise term e satisfies the

following condition:
m 1 21 m-2
E[(le|™|x] < 5mo L™= aexeX

for some constant o, L, m,n > 2.



Main Results (Continued)

Results on Generalization Ability:
» Mirrored Initialization (Existing Result)[3]:

s(d+1)

1NN — F)1Z, < O(n™@0+9)
» Standard Initialization (Theorem 4.3, 4.4):
I~ F1E, ~ O(n~73)

When the smoothness s is close to 1 (a common assumption), the
generalization error of mirrored initialization is approximately n=2
and is shown to be minimax optimal. However, in contrast, the
generalization error of commonly used standard initialization

scales as n~ 7 , highlighting the so-called Curse of Dimensionality.



Comparison of Mirrored Initialization and Standard
Initialization

We train wide networks under mirrored initialization and
standard initialization with a smooth goal function and under
different sample sizes n. The figure compares the MSE
generalization error of the two initialization methods across varying
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Figure: Comparison plot of generalization error.



Smoothness of Real Datasets

We evaluate the smoothness of different real-world datasets by
calculating the smoothness of their goal functions.

With the input dimension d = 784,3072, 784, the smoothness of
initialization function is equal to d%rl ~ 0. However, the
smoothness of real datasets is far better than d%rl, which implies
that standard initialization will indeed destroy the
generalization performance.

Dataset Dimension Smoothness
MNIST 28 x 28 x 1 0.40
CIFAR-10 32 x32x 3 0.09

Fashion-MNIST 28 x 28 x 1 0.22

Table: Smoothness of goal functions for popular datasets.



Conclusion

Summary of Findings

» This study highlights the importance of initialization
techniques in neural networks and their effects on
generalization abilities, especially the superiority of mirrored
initialization over standard initialization.

» Under NTK theory, the learning rate nmas with standard
initialization performs so poorly that we have reason to
believe NTK theory cannot fully explain the superior
performance of neural networks.

Thank you!
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