

Visual Fourier Prompt Tuning

Runjia Zeng^{1*}, Cheng Han^{2*}, Qifan Wang³, Chunshu Wu⁴, Tong Geng⁴, Lifu Huang⁵, Ying Nian Wu⁶ and Dongfang Liu^{1†}

¹Rochester Institute of Technology ²University of Missouri - Kansas City ³Meta AI ⁴University of Rochester ⁵Virginia Tech ⁶University of California, Los Angeles

Content

- 1. Introduction
- 2. Visual Fourier Prompt Tuning
- 3. Main Results
- 4. Study of Optimization
- 5. Study of Interpretability
- 6. Conclusion

Introduction

1. Introduction

Observation

A significant performance degradation occurs when there is a substantial disparity between the data used in pretraining and finetuning.

Natural <**FID:** 156.39>

Specialized <FID: 245.69>

Structured <FID: 234.96>

Key Idea

Integrating frequency domain information into learnable prompt embeddings to elegantly assimilates data from both spatial and frequency domains.

Visual Fourier Prompt Tuning

2. Visual Fourier Prompt Tuning

Main Results

3. Main Results

ViT-Base/16 [23]	Tuned/	Scope	e Extra VTAB-1k [78] [19]			78] [19]		
(85.8M)	Total	Input Backbone	params	FOVC [4] [3]	Natural [7]	Specialized [4]	Structured [8]	Mean Total
Full [CVPR22] [92]	100.00%	√		88.54%	75.88%	83.36%	47.64%	65.57%
Linear [CVPR22] [92]	0.08%			79.32% [0]	68.93% [1]	77.16% [1]	26.84% [0]	52.94%
Partial-1 [NeurIPS14] 93	8.34%			82.63% [0]	69.44% [2]	78.53% [0]	34.17% [0]	56.52%
MLP-3 [CVPR20] [94]	1.44%		✓	79.80% [0]	67.80% [2]	72.83% [0]	30.62% [0]	53.21%
Sidetune [ECCV20][31]	10.08%	✓	√	78.35% [0]	58.21% [0]	68.12% [0]	23.41% [0]	45.65%
Bias [NeurIPS17] 30	0.80%	✓		88.41% [3]	73.30% [3]	78.25% [0]	44.09% [2]	62.05%
Adapter [NeurIPS20] 32]	1.02%	✓	✓	85.46% [1]	70.67% [4]	77.80% [0]	33.09% [0]	62.41%
LoRA [ICLR22] [35]		✓	✓	89.46% [3]	78.26% [5]	83.78% [2]	56.20% [7]	72.25%
AdaptFormer [NeurIPS22] [95]		✓	✓		<u>80.56%</u> [6]	84.88% [4]	<u>58.83%</u> [7]	72.32%
ARC_{att} [NeurIPS23] 96		✓	✓	89.12% [4]	80.41% [7]	85.55% [3]	58.38% [8]	72.32%
VPT-S [ECCV22][4]	0.16%	✓	√	84.62% [1]	76.81% [4]	79.66% [0]	46.98% [4]	64.85%
VPT-D [ECCV22] 4	0.73%	✓	✓	89.11% [4]	78.48% [6]	82.43% [2]	54.98% [8]	69.43%
EXPRES [CVPR23][97]		✓	✓	_	79.69% [6]	84.03% [3]	54.99% [8]	70.20%
† E2VPT [ICCV23] [5]	0.39%	✓	✓	<u>89.22%</u> [4]	80.01% [6]	84.43% [3]	57.39% [8]	71.42%
▶ Ours	0.66%	✓	√	89.24 % [4] {4}	81.35 % [6] {7}	<u>84.93%</u> [4] {4}	60.19% [8] {8}	73.20 %

Swin-Base [24]	Tuned/	VTAB-1k [78] [19]				
(86.7M)	Total	Natural [7]	Specialized [4]	Structured [8]		
Full [ICLR23] 98]	100.00%	79.10%	86.21%	59.65%		
Linear [ICLR23][98]	0.06%	73.52% [5]	80.77% [0]	33.52% [0]		
Partial-1 [NeurIPS14] 93	14.58%	73.11% [4]	81.70% [0]	34.96% [0]		
MLP-3 [CVPR20] [94]	2.42%	73.56% [5]	75.21% [0]	35.69% [0]		
Bias [NeurIPS17][30]	0.29%	74.19% [2]	80.14% [0]	42.42% [0]		
VPT [ECCV22] [4]	0.25%	76.78% [6]	83.33% [0]	51.85% [0]		
† E2VPT [ICCV23] [5]	0.21%	83.31% [6]	<u>84.95%</u> [2]	<u>57.35%</u> [3]		
► Ours	0.27%	84.53 % [7] {5}	86.15 % [2] {4}	58.21 % [3] {6}		

3. Main Results

Pretrained objectives	MAE [90]				MoCo v3 [26]			
Methods	Tuned/	Tuned/ VTAB-1k [78] [19]			Tuned/	VTAB-1k [78] [19]		
	Total	Natural [7]	Specialized [4]	Structured [8]	Total	Natural [7]	Specialized [4]	Structured [8]
Full [CVPR22] [92]	100.00%	59.31%	79.68%	53.82%	100.00%	71.95%	84.72%	51.98%
Linear [CVPR22][92]	0.04%	18.87% [0]	53.72% [0]	23.70% [0]	0.04%	67.46% [4]	81.08% [0]	30.33% [0]
Partial-1 [NeurIPS14] 93]	8.30%	58.44% [5]	78.28 % [1]	<u>47.64%</u> [1]	8.30%	72.31% [5]	<u>84.58%</u> [2]	47.89% [1]
Bias [NeurIPS17] 30]	0.16%	54.55% [1]	75.68% [1]	47.70% [0]	0.16%	72.89% [3]	81.14% [0]	53.43% [4]
Adapter [NeurIPS20] [32]	0.87%	<u>54.90%</u> [3]	75.19% [1]	38.98% [0]	1.12%	74.19% [4]	82.66% [1]	47.69% [2]
VPT-S [ECCV22][4]	0.05%	39.96% [1]	69.65% [0]	27.50% [0]	0.06%	67.34% [3]	82.26% [0]	37.55% [0]
VPT-D [ECCV22][4]	★ 0.31%	36.02% [0]	60.61% [1]	26.57% [0]	★ 0.22%	70.27% [4]	83.04% [0]	42.38% [0]
GPT [ICML23] 101	0.05%	47.61% [2]	76.86% [1]	36.80% [1]	0.06%	<u>74.84%</u> [4]	83.38% [1]	49.10% [3]
► Ours	0.38%	53.59% [6] {6}	<u>77.75%</u> [1] {3}	36.15% [1] {6}	0.22%	77.47 % [5] {7}	85.76% [3] {4}	58.74 % [6] {8}

3. Main Results

Study of Optimization

4. Study of Optimization

Study of Interpretability

5. Study of Interpretability

Conclusion

6. Conclusion

Simplicity

Integrating spatial and frequency domain information through an intuitive yet effective design.

Generality

Demonstrating generality across datasets with varying disparities while ensuring powerful performance.

Interpretability

Thoroughly investigating the associations between learnable prompts and frozen embeddings to elucidate our generality.

THANK YOU!