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Introduction and Preliminaries

Social networks are omnipresent because they model interactions on social platforms
Social network analysis is key to community detection, user connectivity etc.

Widely agreed that social network links are formed from homophily or social influence
Homophily: associated nodes imply feature similarity (form cycles)

Social Influence: popular nodes have direct influence in forming links (form hierarchies)
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Social Network Embedding Models

Observations:

e Shallow embedding models (structural
embedding) do not effectively learn
graph structure (limited to attributes)

e Models do not capture all social
network factors e.g., social influence

e All network structures are modeled in
same space e.q., flat Euclidean space

Category Description
GraRep [Cao et al., 2015], shallow embedding
integrating global structural information
Ei:;;gg;ilg RolX [Henderson et al., 2012], unsupervised learning
TN approach using structural role based similarity
GraphWave [Donnat et al., 2018], shallow embedding
model using spectral graph wavelet diffusion patterns
GraphSAGE [Hamilton et al., 2017], inductive
framework using node features and neighbor aggregation
GNNI\E:(;ETSdmg GCN [Kipf and Welling, 2017], semi-supervised learning

(Euclidean space)

model via graph convolution on local neighborhoods

GAT [Veli¢kovic et al., 2018], graph attention model
using mask self-attention layers on local neighborhoods

Homophily-based
Embedding
Models

GELTOR [Hamedani et al., 2023], embedding method
using learning-to-rank with AdaSim* similarity metric

NRP [Yang et al., 2020], embedding model using
pairwise personalized PageRank on the global graph

GNN Embedding
Models
(non-Euclidean space)

HGCN [Chami et al., 2019], hyperbolic GCN model
utilizing Riemannian geometry and hyperboloid model

+x-GCN [Bachmann et al., 2020], GCN model using
product space e.g., product of constant curvature spaces

Mixture Models
(homophily and
social influence)

RaRE [Gu et al., 2018], Bayesian probabilistic model
for node proximity/popularity via posterior estimation

NMM, our non-Euclidean mixture model (see Eqn. 9),
without use of GraphVAE framework

NMM-GNN , our non-Euclidean mixture model
with non-Euclidean GraphVAE framework

SOTA baseline models /e W\ Samueli
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Motivation and Problem Definition
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e Asocial network G = (V, A) consists of vertices V = {vi}N,.=1, and adjacency matrix e € A
e We aim to design a model to jointly learn both node homophily and social influence representation,
denoted zI.S and z,.H respectively, that can best explain the social network for link reconstruction.
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Encoder and Prior Distributions
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The encoder maps nodes into z° (homophily)

and z" (social influence), which follow

non-Euclidean prior distributions.
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Decoder: Non-Euclidean Mixture Model

Embeddings are passed into our mixture
model decoder (homophily + social
influence).

Objective: maximize likelihood to observe
links (= minimize link reconstruction loss).
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Space Unification
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We design space unification
component to align distinct
geometric spaces
o Ensures two embeddings of
same node correspond to
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o zMin the Poincaré ball is . ; Surface of
projected on the surface of Divergence Spherical ball (2D)
the sphere and its distance @

to z° is minimized
Space unification architecture

UCLA Samueli 7

Computer Science




Dataset Statistics

Table 1: Dataset statistics for evaluation datasets.

Dataset # Vertices | # Edges Type # Classes
BlogCatalog 10.3K 334.0K undirected 39
LiveJournal 4.8M 69.0M directed 10

Friendster 65.6M 1.8B undirected -

UCLA

Experiment Evaluation: 90% of links randomly sampled as training. Do not perform
cross-validation as it may cause overfitting of learnable parameters: z, 7, J,B, C,D,y, W.

Samueli

Computer Science

8



Evaluation: Classification & Link Prediction

Table 3: Results of social network classification and link prediction for Jaccard Index (%), Hamming Loss (%), F1 Score (%), AUC (%)
using embedding dimension 64. Our NMM and its variants are in gray shading. For each group of models, the best results are bold-faced.
The overall best results on each dataset are underscored. TAblation study variant models using distinct non-Euclidean geometric spaces for
NMM (homophily/social influence) where E, S, and H denote Euclidean, Spherical, and Hyperbolic spaces.

Datasets BlogCatalog LiveJournal Friendster
Metrics Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC
GraRep 36.0 282 456 87.9 401 411 352 56.7 536 342 20.6 89.8
RolX 372 25.4 487 90.4 40.9 38.0 35.6 60.1 58.8 33.9 40.9 90.3
GraphWave 39.5 22.8 48.9 923 42.2 37.6 35.9 60.1 59.0 315 41.1 90.5
GraphSAGE 154 20.1 493 92.0 455 347 341 59.0 64.1 287 34 90,5
GCN 473 19.5 55.1 91.6 46.7 312 478 62.6 66.5 28.0 472 91.9
GAT 47.9 19.3 54.5 91.4 474 28.5 49.0 65.3 66.3 28.0 46.8 92.0
GELTOR 474 193 549 92.0 510 289 486 653 66.7 279 475 91.7
NRP 61.6 204 65.2 95.5 69.7 24.5 64.0 78.7 72.2 22.6 52.8 92.2
HGCN 56.7 192 60.9 927 588 27.1 577 685 69.9 243 299 933
k-GCN 61.6 20.7 65.4 953 63.6 27.3 57.2 69.1 69.4 24.1 50.3 93.1
RaRE 61.4 20.6 65.6 95.1 742 238 65.1 79.9 757 225 55.0 944
NMM(H? /s T 56.6 19.8 623 95.1 74.0 28.4 55.5 68.8 74.6 269 50.6 93.0
NMM (5% /s T 57.1 19.6 65.9 94.0 747 27.6 57.1 69.0 753 262 525 93.4
NMM (E4 /E4) T 57.9 19.5 66.3 95.4 75.1 25.0 58.4 71.2 77.0 24.7 52.8 94.5
NMM (s /E) T 59.2 19.2 67.1 95.5 75.3 24.4 59.3 745 775 233 543 94.5
NMM (H? /He) T 584 19.0 66.7 953 75.6 24.6 61.9 76.0 78.8 233 55.0 94.7
NMM (E4 /H4) T 60.3 19.1 67.8 95.7 76.2 232 64.4 79.2 79.1 226 55.4 94.5
NMM (ours) 62.7 19.0 70.9 95.8 76.5 29k 67.3 84.2 79.8 2211 56.3 94.8
NMM-GNN (ours) 62.6 17.3 78.8 96.9 78.6 20.4 67.3 86.8 83.3 21.8 571 94.9

e Modeling for both social network factors jointly achieves superior performance
e Homophily is best modeled in spherical space and social influence is best modeled in

hyperbolic space /e W\ Samueli ¢
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e NMM, pe(el.j =1)=a -phom(eij =1)
* NMMrank: pe(eij = 1) = '8 ) prank(eij = 1)
e NMM: our mixed distribution model

On embedding dimension 64 for AUC score

¢ NMM-GNN and RaRE on LiveJournal
e As less training nodes are observed,
NMM-GNN outperforms RaRE by larger
margins (e.g., 10% vs. 70% training nodes)
o better generalization to unseen graphs
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NMM-GNN Contributions

(1) We propose Graph-based Non-Euclidean Mixture Model (NMM) to explain social
network generation. NMM represents nodes via joint influence by homophily (spherical
space) and social influence (hyperbolic space), with space alignment component.

(2) The first to couple NMM with graph-based VAE learning framework, N\MM-GNN.
(@) We introduce a novel non-Euclidean VAE framework where node embeddings are
learned with a powerful encoder of GNNs using spherical and hyperbolic spaces,
non-Euclidean Gaussian priors, and unified non-Euclidean optimization.
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