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Motivation

* Theoretical: long philosophical tradition (Fodor,
Chomsky) of inductively arguing from key
properties of human cognition that cognition itself
must be underpinned by a compositional system

- Empirical: compositional representations = | o R o Bl o RREE S
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Existing Work

« Disentanglement is a key approach for compositional representation learning.

« Aims to isolate underlying factors of variation (FoVs) into distinct parts of the
representation.
* i.e., FoVs should be 1-1 mapped to representational parts — the Jacobian requirement of
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Disentanglement and Symbolic Compositionality

« Disentanglement enforces a fundamentally A B O D
symbolic treatment of compositional 2
structure. L
« This is because disentanglement essentially o g | [ |
allocates FoVs to distinct representational slots. T 3
a concatenate
£
L

* The overall representation is thus analogous to a
string formed by the concatenation of FoV
slots (tokens).

Representation,
P(x)
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Our Key Hypothesis

« Symbolic compositional representations may be fundamentally incompatible with
the continuous vector spaces of deep learning:

Gradient Flow & Learning Expressivity & Robustness to Noise

» This localist encoding offered by symbolic * Consider a symbolic compositional representation of n
compositional representations may restrict smooth FoVs, in d-dimensional space.
flow of gradient across all dimensions of the * Such a representation has constrained practical
representation - e.g., when updating a single FoV expressivity, as each FoV only has d//n dimensions to
(shown in yellow). encode information (contrast the case on the LHS

* Updates to a single FoV therefore provide minimal where each FoV can only use a single dimension vs the
feedback to other FoVs, preventing joint and RHS where FoVs can use two dimensions)
interdependent FoV updates. * Furthermore, such an encoding scheme is highly

* Furthermore, the localist encoding produces abrupt and vulnerable to dimension-wise noise, as such noise will
discontinuous changes in the representation space directly impair the representation of the corresponding
when transitioning between FoV updates, potentially FoV (i.e., there is no overlapping or redundant encoding
complicating convergence. to distribute the effect of such noise)

* The symbolic/continuous mismatch may manifest in broadly suboptimal deep
learning model behaviour.



A New Way of Treating Compositional
Structure?

0
« Can we align compositional structure 3 ‘ A
with continuous vector spaces, by L; ~
formulating a fundamentally o
distributed compositional Bl
representation? £ \_ )
» Such an approach smoothly blends FoVs L l

into the representation — like the
continuous superimposition of multiple
waves into an aggregate wave (in red on
the RHS)

some continuous,
interactive operation

l

‘\_\,/\'\'\M/Jv\_\,/\"

Representation,
Y(x)



Soft TPR Framework

« To do this, we propose a new compositional representation learning
framework, the Soft Tensor Product Representation (TPR) framework, which
comprises:

1. Soft TPR: a new, inherently distributed compositional representational
form.

2. Soft TPR Autoencoder: a theoretically-principled method for learning Soft
TPRs.



Soft TPR

* Our Soft TPR form is a new mathematical specification that
represents compositional structure in a distributed fashion:

Soft TPRs

Soft TPR Form:
ZE{XEVF®VR | |x _lptpr”F SE}

where || 4]l denotes Frobenius norm of 4,
€ some small, +ve scalar-valued constant,
Y¢pr a (traditional) TPR produced by TPR function mapping from data to TPRs in Vr @ Vg

* It extends upon Smolensky’s Tensor Product Representation

e-radius

Underlying Representational Space
Ve @ Vg

» Soft TPR preserves the traditional TPR'’s useful

gnaﬁh)ematical & structural properties (see paper for proofs & further
etails).

» Soft TPRs have the added benefits of being easier to learn
and more representationally flexible than TPRs.

— This allows Soft TPRs to be applied in broader settings

compared to traditional TPRs |14 _ 9,
e.g., the non-formal domain of vision with a more realistic weak
supervision requirement.



Soft TPR Autoencoder
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» Anovel framework introduced to learn Soft TPRs. 3 main components (please see paper for
more details):

« Encoder: Produces a candidate Soft TPR, z.

« TPR Decoder: Leverages the mathematical properties of the Soft TPR/TPR framework to
encourage z to have the correct mathematical form of a Soft TPR (unsupervised loss).

 Weak Supervision: Apply a weakly supervised loss inspired by prior disentanglement
work to encourage z to contain the correct semantic content.



Results

« Our results empirically suggest that the enhanced vector space alignment
produced by Soft TPRs is broadly beneficial for deep learning models (both
representation learners & downstream models).

* Please see the Appendix in our paper for an extensive suite of experimental results.



Result #1: Structural

 Structurally, Soft TPRs are more explicitly compositional than baselines
(as quantified by disentanglement metrics).

» SoTA disentanglement (DCI boosts of : on Cars3D/MPI3D).

Table 1: FactorVAE and DCI scores. Additional results in Section C.3.3

Cars3D Shapes3D MPI3D
Models FactorVAE score DCI score FactorVAE score DCI score FactorVAE score DCI score

Symbolic scalar-tokened compositional representations

Slow-VAE 0.902 £0.035 0509 +£0.027 0950+ 0.032 0.850+£0.047 0.455+0.083 0.355 + 0.027

Ada-GVAE-k 0947 £ 0.064 0.664+0.167 0.973+£0.006 0963+ 0.077 0.496 + 0.095 0.343 £+ 0.040

GVAE 0.877 £0.081 0262+0.095 0921 +0.075 0.842+0.040 0378 £0.024 0.245 + 0.074

ML-VAE 0.870 £ 0.052 0.216 £0.063 0.835+0.111 0.7394+0.115 0.390 £ 0.026  0.251 4+ 0.029

Shu 0.573 £0.062 0.032£0.014 0.265+0.043 0.017+0.006 0.287 +0.034  0.033 + 0.008
Symbolic vector-tokened compositional representations

VCT 0.966 = 0.029 0382+£0.080 0.957+0.043 0.884+£0.013 0.689£0.035 0.475 + 0.005

COMET 0.339 £ 0.008 0.024 £0.026  0.168 £0.005 0.002 £0.000 0.145+0.024  0.005 £ 0.001

Fully continuous compositional representations
Ours 0.999 +0.001 0.863 +£0.027 0984 +=0.012 0.926 £0.028 0.949 = 0.032  0.828 + 0.015



Result #2:. Representation Learner
Convergence

« Soft TPRs have faster representation learner convergence.

« Representations useful for downstream tasks can be consistently learned

with substantially fewer representation learner training iterations.

* We consider the 2 standard downstream tasks used in disentanglement: FoV regression and abstract visual
reasoning.

* Note that at 100 iterations of representation learner training, Soft TPRs (in blue) achieve performance (Fig 20 & Fig
22) that is only achieved with 2 orders’ magnitude more training iterations by the most competitive baseline.
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Figure 22: Convergence of representation learners as measured by classification performance on the abstract

Figure 20: Convergence of representation learners as measured by FoV regression on the MPI3D dataset : : ; ;i 5 .
visual reasoning dataset (dimensionality-controlled setting)

(dimensionality-controlled setting)



Result #3: Downstream Performance

« Soft TPRs have substantially superior downstream sample efficiency
(e.qg., ) and low-sample regime performance (e.g., ).

» Again, we consider the 2 standard downstream tasks of FoV regression and abstract
visual reasoning, a subset of results below:

Table 5: Abstract visual reasoning ac-
curacy in the low-sample regime of 500
samples.

Models Symbolic scalar-tokened

Table 4: Downstream FoV R? scores (odd columns) and sample
efficiencies (even columns) on the MPI3D dataset.
100 samples 100 samples/all 250 samples 250 samples/all

Models Symbolic scalar-tokened compositional representations
Slow-VAE  0.127 £ 0.050 0.130+£0.051  0.152+0.011  0.155 + 0.011 Slow-VAE 0.196 + 0.028
Ada-GVAEk  0.206 +0.031 0270+0.037  02134+0.023 0279 +0.026 Ada-GVAE-k 0.203 + 0.007
GVAE 0.181 £ 0.030  0.234 + 0.035 0.217 £ 0.023 0.282 + 0.027 GVAE 0.182 £0.013
ML-VAE 0.182 +£0.013 0.236 &+ 0.019 0.222 £+ 0.024 0.288 £ 0.030 ML-VAE 0.193 +0.012
Shu 0.151 £ 0.016 0.343 +0.024 0.211 £ 0.026 0.482 £+ 0.075 Shu 0.200 £+ 0.010
Symbolic vector-tokened compositional representations Symbolic vector-tokened
VCT 0.086 £ 0.051 0.189 £+ 0.107 0.119 £ 0.070 0.246 £+ 0.137 VCT 0.277 + 0.039
COMET -0.051 +£0.015 0.000 £ 0.000 -0.042 + 0.018 0.000 =+ 0.000 COMET 0259 + 0.016
Fully continuous compositional representations Fully continuous
Ours 0.490 + 0.068  0.556 & 0.078 0.594 + 0.056 0.665 =+ 0.067

Ours 0.360 + 0.033



Thank you ®

* In summary:

1. We propose a new framework for learning fully continuous compositional representations (Soft TPR +
Soft TPR Autoencoder)

2. Our approach is the first to learn fully continuous compositional representations in the non-formal
domain of vision

3. Extensive empirical results highlight the far-reaching benefits of our representation’s enhanced vector
space alignment, for representational structure, representation learners, and downstream models,

underscoring the necessity of reconceptualising compositional representations in a fully continuous
manner.

» Please see our full paper for more details on our approach, including proofs, conceptual
motivation, theory, and suggestions for future work.

« Code is available!
* Questions? Thoughts? Contact bethia.sun@unsw.edu.au
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