Policy Mirror Descent with Lookahead

Kimon Protopapas, Anas Barakat *

ETHzurich

*currently at Singapore University of Technology and Design

Motivation

e What is lookahead?
o use multi-step greedy policy improvement instead of 1-step greedy.
o ldea: applying the Bellman operator multiple times before computing

a greedy policy leads to better approximation of optimal value
function.

e 1-step greedy policy improvement not necessarily the best choice:
o Empirical success: AlphaZero and MuZero

o Prior theoretical work: lookahead investigated with Policy Iteration
e.g. [Efroni et al. 2018] but not with PG.

Main Idea: Policy Gradient Algo + Lookahead

New class of PG algorithms: h-PMD bringing together:
1. Policy Mirror Descent (PMD) algorithms
2. Multi-step greedy policy improvement with lookahead depth h

Combines benefits of Policy Gradient Methods and Tree Search
Methods (e.g. MCTS)

From PMD to PMD with Lookahead

Standard PMD
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PMD with Lookahead
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Convergence and Sample Complexity

Setting: discounted infinite horizon MDP (S, A, P, r, )

Exact Setting: improved y"-linear convergence rate

Inexact Setting: improved sample complexity

Function Approximation Setting: state space size independent bound
No dependence on distributional mismatch coefficients

Exact Setting
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Theorem 4.1: Under suitable assumptions, iterates of h-PMD in the exact setting

have a suboptimality gap converging to zero at a linear rate of y™:
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Inexact Setting
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e lookahead Q-function estimation via Monte Carlo Planning

Theorem 5.4: Under suitable assumptions, and using Monte Carlo
Planning to estimate lookahead value function, inexact h-PMD achieves
the following sample complexity:
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h-PMD in the DeepSea environment from DeepMind’s bsuite?. From left to right: exact
setting, inexact setting (iteration complexity) and inexact setting (time complexity).
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Function Approximation Setting
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Assumption 6.1. The feature matrix U € R°4*4 where d < SA is full rank.

Assumption 6.2 (Approximate Universal value function realizability). There exists egs > 0 s.t. for
any m € I, infgcpa||QF — ¥0||oo < €Ea -

Theorem 6.1: Under suitable assumptions, including the assumptions
above, the iterates of h-PMD using function approximation have a
suboptimality gap converging to zero at a linear rate of y", without
dependence on state space size:
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Implies a state-space size independent sample complexity

Continuous Control Simulations

e Implementation:
o h-PMD using MCTS for lookahead value function estimation.
o Uses Deep Mind’s MCTS implementation in JAX

e Message: lookahead can be beneficial in some environments even in
iInexact settings
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