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Interpreting neural networks

How important is a model component?
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Motivating question

Define the ablation loss gap A(M, A) := P(M\A) — P(M).

What is the best performance on subtask D the model M
could have achieved without component A?
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Motivating question

Define the ablation loss gap A(M, A) := P(M\A) — P(M).

What is the best performance on subtask D the model M
could have achieved without component A?

|. Performance on subtask D is measured via expected loss on the

subtask, i.e. P(M) = Ex.p L(M(X), M(X)).

Il. Model M could have achieved: M\ is constructed solely by
changing the value of A(X).

l1l. Without component A: M\A(x) uses a value for A that
conveys no information about x.
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Example

Maximilian Li and Lucas Janson

Optimal ablation for interpretability



Motivation
0000000800

Example

Definition: A total ablation method satisfies
MM(X) = MMA(X, A) for A L X.
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Example

Zero ablation: A= 0.
Mean ablation: A = EX’ND[-A(X/)]
Resample ablation: A= A(X’), X" 1L X.

Maximilian Li and Lucas Janson

Optimal ablation for interpretability



Motivation
0000000000

Motivating question

Define the ablation loss gap A(M, A) := P(M\A) — P(M).

What is the best performance on subtask D the model M
could have achieved without component A?

IV. “Best” performance: we want to understand how much
performance degrades because we had to ablate A.

Seeking best performance avoids interventions that “spoof” the
model by causing it to confuse x for a different input, or treat x in
a way that it never treated any training input.
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Optimal ablation

Definition:

M}:;t)(X) = M.A(X7 a*))

a* :=argminEx.p LM (X, a), M(X))

Let A(M, A) be the ablation loss gap for some component A
measured with any total ablation method. Then

Aopt(M, A) < A(M, A)
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Comparison to counterfactual ablation
Counterfactual ablation (CF) considers pairs of parallel inputs.

m CF requires manual effort for each subtask and may not be
possible for complex subtasks. OA is more versatile than CF.

gave the potion to...
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Comparison to counterfactual ablation

Counterfactual ablation (CF) considers pairs of parallel inputs.

m CF removes less information than OA, yet still achieves higher
loss, which is evidence that most loss can be attributed to

spoofing.

Table 1: Comparison of ablation loss gap A on I0OI
Zero Mean Resample CF-Mean Optimal CF

Rank correlation with CF -~ 0.590  0.825  0.828 0.833 0.907 1
Medianratio of A to A 11.1%  33.0% 17.7% 31.7% 100% 88.9%
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Circuit discovery

We introduce a uniform gradient sampling method to find circuits.
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Circuit discovery results

10l circuits, ablation comparison
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Greater-Than circuits, ablation comparison
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Causal tracing
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Causal tracing results

Causal tracing intervention at last token, window size 5
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Latent prediction

Maximilian Li and Lucas Janson

Optimal ablation for interpretabilit




Applications
00000@00000

Latent prediction
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Latent prediction: tuned lens
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Latent prediction: Optimal Constant Attention (OCA lens)
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Latent prediction results

Lens loss, GPT-2-XL
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Latent prediction: causal faithfulness

Causal faithfulness: basis-aligned perturbation
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Latent prediction: truthful elicitation

Elicitation accuracy on selected datasets with 10 demos, GPT-2-XL

Average of 15 datasets DBPedia
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