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CALANet: Cheap All-Layer Aggregation 
Network for Human Activity Recognition



➢ Human Activity Recognition (HAR) aims to record people's behaviors and allows computing 
systems to monitor, analyze, and assist their daily lives. 

What is Human Activity Recognition?
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➢ For the HAR, the loss of detailed information over layers makes it challenging to classify 
the analogous activities, such as “Sit” and “Talk-Sit” of KU-HAR dataset.
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Design goal
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• In conventional CNNs, the classifier only uses features at the last layer.

• The use of features for all layers leads to a significant increase in computational cost.
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➢ Learnable Channel-wise Transformation Matrix (LCTM) compresses global temporal information in 
each channel at each layer. (Temporal Resolution 𝑇→𝑁, 𝑇≫𝑁)
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➢ Scalable Layer Aggregation Pool (SLAP) allows CALANet to stack layers without increasing 
computational cost, improving the effectiveness of all-layer aggregation. 
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• We formulated the computational cost of neural networks as a function of architectural parameters in 

asymptotic notation, i.e., time complexity.

• SLAP is achieved by omitting 𝐿 from Proposition 1.

Proposition 1. The time complexity of CNNs is formalized as:

Theorem 1. The time complexity of CALANet is reduced to:

Corollary 1. The time complexity of CALANet is equivalent to the shallow CNNs with 𝐿 ≥ 2.

Corollary 2. The time complexity of CALANet is equivalent to the shallow CNNs with 𝐿 = 1 if 



Experimental Results

➢ Comparison to SoTA ➢ The breakdown effect of CALANet 

KU-HAR PAMAP2

➢ Real-Time Activity prediction



Email: jgp0566.cau@gmail.com

Thanks!
Contact Us:

mailto:jgp0566.cau@gmail.com

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7

