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Key Findings

% Each layer of a linear transformer acts
like a step in a complex optimization
algorithm, similar to gradient descent.

@ Linear transformers can learn to solve
challenging problems, like linear
regression with varying levels of noise.

They discover effective optimization
strategies that outperform standard
methods.

\ These strategies include adjusting
step sizes based on noise levels and
rescaling the solution.

Model: Linear Transformer

e Linear Transformer updates each layer using
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e Eachtokene; = (x;,y;) € R+ consists of
a feature vector z; € R? , and its
corresponding output y; € R.

e We append a query tokene,, 11 = (x4, 0)
to the sequence, where I represents test
data.

e The goal of in-context learning is to predict
Y+ for the test data ;. .
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various machine learning tasks.
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Problem: Noisy regression

For each input sequence T the input is given by:

e A ground-truth weight vector w,. ~ N(0, I).

e n input data points x; ~ N(0,1).

e Noise §; ~ N (0, 02) sampled with variance
o, ~plo;).

o Labelsy; = (w,,xz;) +&;.

For a known noise level 0, the best estimator

for w - is provided by ridge regression:
n
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We also consider problems where the noise
variance o - is sampled from a given distribution

p(or).
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Main Result: Linear transformers
maintain linear regression model
at every layer.

Linear transformers are restricted to maintaining
a linear regression model based on the input:

Theorem 4.1. Suppose the output of a linear transformer
at l-th layer LS (xla yl) (CE2, y2) ( L5 yn) (xéa yé)’ then

there exists matrices M vectors ul w' and scalars a* such
that
1+1 l l s I
.= M'z; + yu', = My,
=1 l l H—l l
Y; _ayi_<w 7a71l>7 Yy <w 7a7t>'

re simple, can be a surprisingly versatile in-context

They can discover effective optimization strategies that outperform standard methods.

Transformers have the potential to automatically discover new and effective algorithms for

Diagonal attention matrices

We also analysed even simpler variant of linear
transformer with diagonal attention matrices.
Since the elements o are permutation invariant, a
diagonal parameterization reduces each attention
heads to just four parameters:
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Using reparametrization
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leads to the following diagonal layer updates:
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Each term controls a specific aspect of the
updates:

— yz T wya:<a 7x'i> T wyyyi)‘l7

o ym : how much z! influences i ™.
o Controls the gradlent descent.
o .. how much SL‘ influences :vl+1

e Controls the preconditioner strength.
o way: how much y; influences !t

o Adapting the step -sizes based on the noise.
o : how much y! influences y!*1.

yy
o Adaptive rescaling based on the noise.

Experiments

Linear Transformer-based methods:

e Full. Trains full parameter matrices.

e Diag. Trains diagonal parameter matrices

e GD++. An even more restricted diagonal variant
that uses only w . and w , terms.

Baselines:

e Constant Ridge Regression (ConstRR). The
noise variance is estimated using a single scalar
value for all the sequences.

e Adaptive Ridge Regression (AdaRR). Estimate
the noise variance via unbiased estimator:
Tost = mea 21 (¥j — ;)% where g;
represents the solution to the ordinary least
squares.

e Tuned Adaptive Ridge Regression (TunedRR).
Same as above, but after the noise is estimated,
we tuned two parameters:

o a max. threshold for the estimated variance,
o a multiplicative ad,. to the noise estimator.

.o\é
NEURAL INFORMATION
PROCESSlNG SYSTEMS

Uniform o, ~ U(0, 0,,02)

Omax = 2

Rong Ge
rongge@cs.duke.edu

Omax = 1

i

(&)
o
|

Adj. eval loss
—r
o
&
|

1910
@ 100
o
©
>
© 1014
=
<
Number of layers Number of layers Number of layers Number of layers
— GD** —— Diag —— Full ---- ConstRR ---- AdaRR  ---- TunedRR
g =0 (o) =1 (9) =3
8 001 0 max max max
o
©
>
®
._.C.J;
<
Variance o Variance o Variance o Variance o
® 0.20 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers
@ 0.
20.15- - - - - -
< 0.10- - - - - -
@
=2 0.05 - - - - -
©
<0-00 1 1 1 I I 1 1 1 I I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1
0123 4560123456012 34546012 345460123 45160123 45 6
Variance o Variance o Variance o Variance o Variance o Variance o
Categorical o ~ S
ategorical o,
or € {1,3,5}
é ‘_é’o.z
g S 0:1~
) T
< 1 | I I <00 I 1 1
1 3 5 7 O 1 2 3 4 5 6
Number of layers Noise variance Number of layers Noise variance
2 layers 3 layers 4 layers 5 layers 6 layers 7 layers
v 0.2
~—
o O \/
&l 50.1- \/ & - <! h g
)
g <OO | I I 1 1 1 1 | I I I I 1 1 1 1 | | | I I I | 1 1 T | | I I
® 0.2
g
m — — —— — — —
~ 5
W-J<00 | I 1 1 1 I I 1 1 1 I I 1 1 1 I 1 1 1 1 I I 1 1 I I 1 1 | |
W 0123456012 345460123 4546012 345460123 4516012 3 456
tl§ Variance 0 Variance o Variance o Variance 0 Variance o Variance o
— GD*? —— Diag —— Full ---- ConstRR ---- AdaRR ---- TunedRR



