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Ub, lectives

Many VSAs have shown issues in numerical stability, computational
complexity, or performance when applied in neural
network

Introduced a novel VSA derived from Walsh Hadamard
transformation, named Hadamard-derived Linear Binding (HLB)

HLB supports commutative and associative binding in linear time
and provides a numerically exact inverse while unbinding

Defined a bimodal distribution which is proposed as initialization
condition that numerical instability

Moreover, mathematically derived a correction term that improves
the response of HLB during unbinding



Binding Deﬁniﬁon

The Binding function is defined by replacing the Fourier transform in
circular convolution with the Hadamard transform
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A parameter p is defined that denotes the number of vector pairs
bundled in a
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Unb ind'mg

The unbinding is defined via an inverse function following the theorem. This
will give a symbolic form of unbinding step that retrieves the original
component x being searched for, as well as a necessary noise component
n” which must exist whenever p > 1 items are bound together

Proof of Theorem 8.2.1. We start from the identity function|Hz - Hx' = 1|and thus
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Projection

» To reduce the noise component, Holographic Reduced Representations (HRR)
utilizes a projection step that normalizes inputs in Fourier domain

» While such normalization is not helpful in Hadamard domain, we just apply
the to the inputs as a projection step

Definition 8.2.2 (Projection). The projection function of z is defined by|r(z) = 5 - H

If we apply the Definition 8.2.2 to the inputs in Theorem 8.2.1 then we get

, 1 1
B* (B(m(21), m(y1)) + -+ + B(w(z,), 7(y,)), m(y;)") = B*(E -H(z1 0y +--2,09,), ?)

1 1
— H(—- @ (:l’]_ @Ul I s '*,l}/)@yp))

d Y,

71



Y VYV

Simp lgﬁcaﬁon

By applying the projection step, we get a noise componentn”™
More interestingly, the retrieved output term does not contain any Hadamard
matrix
Therefore, the initial binding definition is redefined as B’ (x,y) = x ® y and
- .t 1
unbinding as B*'(x,y) = x ©® "
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Initialization Condition

» For the binding and unbinding operations to work, vectors need to have an
of zero

» Since during unbinding, values close to zero would destabilize the noise
component and create numerical instability

» Thus, a Mixture of Normal Distribution (MiND) is defined with an expected
value of zero

» But the expected absolute value is greater than zero where U is the Uniform
distribution
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Noise Reduction

In expectation, it is proved that n™ < 5~ which is also verified by the experimental

results.
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Similarity Augmentation

Theorem 8.2.3 (¢ — p Relationship). Given x;, vy, ~ Q(p,1/d) Vi e N : 1

< p, the cosine sumilarity ¢ between the original x; and retrieved vector x; s

approximately equal to the inverse square root of the number of vector pairs in a

composite representation p given bylo ~ %
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Therefore, using[Equation 7/and [Equation 8|we can write that
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Cosine Similarity ¢
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LB in Deep Leammg

\4

Experiments are performed in two deep learning applications using HLB

\4

In the first application a method called Connectionist Symbolic Pseudo Secrets
(CSPS) that leverages binding and unbinding to obfuscate the nature of input and
outputs of network using HRR

\4

The same experiments are performed via the properties of HLB

» Similarly, in the second application, different VSA’s are used and compared to
perform Extreme Multi Label (XML) classification
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Experimental Results: CSPS
NTHE

Adversarial Network

Unbinding using
‘ I. .I'I.- Ll

x s Main Network A Prediction Network
1

Mohammad Mahmudul Alam, et. al. “Deploying Convolutional Networks on Untrusted Platforms Using 2D Holographic Reduced
Representations”, ICML 2022, Baltimore, MD, USA

Connectionist Symbolic Pseudo Secrets (CSPS)

Accuracy
Dims/ CSPS + HRR CSPS + VTB CSPS + MAP-C  CSPS + MAP-B  CSPS + HLB
DATASET LABELS
Top@l Top@5 Top@l Top@5 Top@l Top@5 Top@l Top@5 Top@l Top@S
MNIST 282/10  98.51 — 98.44 - 08.46 — 98.40 — 98.73 -
SVHN 322/10  88.44 - 19.59 - 79.95 - 92.43 - 94.53 -
CR10 322/10  78.21 — 74.22 — 76.69 — 82.83 83.81 —

CR100 322/100 4884 75.82 3587 61.79 56.77 81.52 57.76  84.63 58.82 87.50
MIN 842/100  40.99  66.99 4581 7352 5222  78.63 57.91 8281 59.48 83.35

GM

67.14  71.26 4724  67.40 70.89  &80.06 7590 83.72 T7.17 85.40
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Expe rimental Results: XML

Extreme Multi-label Classification
» Each class is represented with a vector, network learns the composite representation
» Each class label is queried, and cosine similarity is used to identify which labels are present
» Evaluated in terms of normalized discounted cumulative gain ( ) and propensity-scored
(PS) based normalized discounted cumulative gain (PSnDCG)

DATASET BIBTEX DELICIOUS MEDIAMILL EURLEX-4K

METRICS nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG
HRR 60.296 45.572 66.454 30.016 83.885 63.684 77.225 30.684
VTB H7.693 45.219 63.325 31.449 87.232 66.948 76.964 31.1R80

MAP-C 59.280  46.092  65.376  31.943  87.255  66.886  72.439 26.752
MAP-B 59.412  46.340  65.431  32.122  86.886  66.562  T1.128 26.340

HLB 61.741 48.639 67.821 32.797 88.064 67.525 77.868 31.526
DATASET EURLEX-4.3K WIKI10-31K AMAZON-13K DELICIOUS-200K
METRICS nDCG  PSnDCG  nDCG  PSnDCG  nDCG  PSnDCG  nDCG PSnDCG
HRR 84.497  38.545  &81.068 9.185 93.258  49.642  44.933 6.839
VTB 84.663  38.540  78.025 9.645 92.373  49.463  44.092 6.664

MAP-C 85.472  39.233  80.203  10.027  92.013  48.686  45.373 6.862
MAP-B 85.023  38.820  80.238  10.035  92.307  48.812  45.459 6.870
HLB 88.204 43.622 83.589 11.869 93.672 50.270 46.331 6.952




\,onclud'mg Remarks

Proposed a novel VSA called that offers significant benefits for
both classical VSA tasks and differentiable systems.

Additionally, proposed a new initialization condition called Mixture of
Normal Distribution (MiND)

Mathematically showed the cosine similarity ¢ is approximately equal
to the inverse square root of the number of bundled vector pairs p

HLB other VSAs in both CSPS and XML tasks across all
datasets, highlighting its extensive potential in Neuro-symbolic Al
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Any Questions?
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