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Problem Setup

We consider the distributed minimax optimization problem

n

min max f(z,y) := % Z fi(z,y),

TEX yeY =1

where f; is the differentiable local function associated with i-th node, and X C Rd=
and Y C R% are the constraint sets.

Centralized setting: one server node and n — 1 client nodes.
Let z = [z;y] € Z and F(z) = [V f; —Vyf]. We assume Z = X x ) is closed and

convex, each f; is L-smooth and convex-concave, f is
strongly-convex-strongly-concave with p > 0, and the similarity as below.

The local functions f1,. .., fn : R% x R% — R are twice differentiable and hold the
d-second-order similarity, i.e., there exists § > 0 such that

V2 fi(z,y) = VZ (=, 9)|| < 6

for all i € [n], x € R% and y € R%.
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Related Work in Convex-Concave Case

We measure the sub-optimality by duality gap, that is

Gap(z) := max f(z,y’) — min f(z',y).
y' €Y z'eXx
Methods CR CcC LGC
2 2 2
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. s 2 _ 5 2
SVOGS O(’”zz) O(n+ﬁ%n) 0(774—%10{;%)
2 2
Lower Bounds 9(5132) Q(n + @) Q(n + M)

Abbr.: CR=Communication Rounds, CC=Communication Complexity, LGC=Local Gradient Calls.
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Related Work in Strongly-Convex-Strongly-Concave Case

We measure the sub-optimality by E[||z — 2*||2].

Methods CR cc LGC
EG [4] O(£1og 1) o(%Elog 1) o(2klog 1)
SMMDS [2] O(£10g 1) O(2210g 1) O(n2tk jog 1)
EGS [5] O(£10gL) O(2210g 1) o(2itkiog )
OMASHA [1]t O(L10g 1) O((n+ L) 10g 1) O(2L10g 1)
TPA [3]f O((n+ ¥y 105 L) O((n+¥)10gl)  O((n+ YL+ L)logl)
TPAPP () 31 O((nt+ Y P)10sl)  O((nt ) 1egd)  O((n+ G+ Lylos )

TPAPP (b) B O((n+ Y2 ) log 1) O((n + Y22 ) 10g 1) O((n + VoEL) 10g 1)

SVOGS O(5 108 1) O((n+ ) 10g 1) O((n+ YLy 10g 1)

Lower Bounds 2(L10g 1) ((n+ Y)Y 10g 1) Q(n+ L2EL ) 10g 1)

Abbr.: CR=Communication Rounds, CC=Communication Complexity, LGC=Local Gradient Calls.

T:Compressors used. ?Different inner steps. H, = [L/(v/n8)] and Hy, = [8log(40nL/u)].
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Motivation of SVOGS

Gradient Sliding: min max flz,y) = Zn:(fl(l, y) — fi(z,y) +f1(z, ).

TEXY s
9(zy):=f(z,y)—f1(z,y)
OGDA: =Pz (zF —n(F(") + F(") — F(zF1))).

optimistic gradient
Approximation of g(z,y):

: . _ 1 .
8@, 9) = 9" v") + (Tag@® v + Vgt vh) - Ve y" T 2 - ahr o [~ =

optimistic gradient with respect to =

. . 1 .
+ (Vyg(wk, v*) + Vyg(xk, y*) — Vyg(ﬂckfl,ykﬂ% Y — yk>—% Hy - ka2~

ic gradi with resp toy

Update: ("1 y* 1) x arg min max §(&,9) + f1(2,9).
TEX geY
Mini-Batch (snapshot point w update with probability ©(1/+/n)):
GiP) + 6P - P ~ \S%I S (@Y + 65 - 6T + (G (2F) — @R ).
jesk

momentum term
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Lyapunov Function

We analyze the convergence of SVOGS by establishing the Lyapunov function (x =0
in convex-concave case) as

oF = (% +M) |28 — 2|12 + 2(F(z* 1) — B (zF 1Y) — F(2%) + Fu(29), 2% — 2%)

1ok ee1p2 . Yok—1 kp2 . Cytme) oy 2
+@HZ I e T | el | T

4n 2pn

Choosing n < 1/(329) leads to the non-negativity of Lyapunov function.

Suppose assumptions hold with 0 < u < § < L, running SVOGS with well chosen
parameters, then we have

E[@*+1] < max{l 2 g ﬂ}lﬁ[qﬂ“]
6 29 + np

1
- —E [I2* - a*|%] - LE [Jo* - a¥)?].
16n 2n
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Convergence: General Convex Concave Case

Suppose assumptions hold with 0 = p < 6 < L and D > 0, running SVOGS with well
chosen parameters, then we have

= 10D% ¢
ky .,k
[r}eaéc 5: (F(u™),u —z)] < " + ot where uavg E uF

v,

Following the theorem, we can achieve E[Gap(u

avg)] < & within communication
rounds of O(6D? /¢), communication complexity of O(n + /néD? /), and local

gradient complexity of O(n + (y/nd + L)D? /elog(1/e)), where uavg K Zk 0 uk
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Convergence: Strongly Convex Strongly Concave Case

Suppose assumptions hold with 0 < u < 6 < L and D > 0, running SVOGS with well
chosen parameters, then we have

K
E[®K] gmax{l_ L ﬂ} 0.
6 2y + np

Following the theorem, we can achieve E [||zX — 2*||2] < & within communication
rounds of O(8/plog(1/e)), communication complexity of O((n + v/nd/u)log(1/e)),
and local gradient complexity of O((n 4 (v/nd + L)/u)log(1/e)).
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Make the Gradient Small

Other than duality gap, we define gradient mapping F-(z) := (2 — Pz(z — 7F(2)))/7
and measure the sub-optimality by E[||F-(2)(|?].

For smooth convex-concave f, we consider the problem

2 2
=Sl =l

| >

A
mp /@) = flea) + g o=

where f is strongly-convex-strongly-concave. Take \ = O(y/2/D), we have the results.

Methods CR CcC LGC
TPAPP 3]} o(n02D2) o(ns2n?) o(n2sL2D%)
SVOGS @(’j/glngé) @((714—%)10{;%) C’j((n-f— W%)D)logé)

Abbr.: CR=Communication Rounds, CC=Communication Complexity, LGC=Local Gradient Calls.

§Additionally assume Z = R? and the sequence generated is bounded by D > 0.
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Lower Bounds

Convex-concave case (to obtain E[Gap(z)] < ¢):

Methods CR CccC LGC
2 _ 2
SVOGS 0222y O(n+ YEIDZ)  G(n 4 (RSELIDT o 1)
2 2
Lower Bounds Q(‘Siﬂ) Q(n+@) Q(n+W+Lw)

Strongly-convex-strongly-concave case (to obtain E[||z — z*||?] < ¢):

Methods CR CcC LGC
SVOGS O(210gl)  O((n+¥2)l0gl)  O((n+ Y2itL)10g 1)

Lower Bounds Q(%]og%)" Q((n + @)]og%)” Q((n+ @)logé)

Abbr.: CR=Communication Rounds, CC=Communication Complexity, LGC=Local Gradient Calls.

® Given by Beznosikov et al. [2]. “Given by Beznosikov et al. [3].
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ts: Robust Linear Regression

min max
llzlli <Rz lyllg <Ry

Gradient Mapping
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Summary

SVOGS compared to former methods

® A novel method combining OGDA, variance reduction and
mini-batch

e Effective in three different complexity measures

e All the lower bounds (nearly) matched at the same time
Future work

® Non-centralized distributed minimax optimization

e Mini-batch for non-convex minimization

T rnds
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