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Introduction

Individual Fairness ensures similar individuals receive similar outcomes. For a classifier h,
individual fairness is achieved if:

dY(h(v), h(w)) ≤ LdV(v, w) ∀v, w ∈ V
where dV and dY are fair metrics on feature and label spaces, respectively.

Distributionally Robust Optimization or DRO aims to minimize the gap between in-sample

and out-of-sample losses using ambiguity sets based on theWasserstein distance. For

distributions P,Q with cost function c(·, ·), the optimal transport cost is:

Wc,p(P,Q) = min
π∈P(Z×Z)

{(
E(z,z′)∼π[cp(z, z′)]

)1
p : π1 = P, π2 = Q

}
TheWasserstein ambiguity set includes all probability measures within a specified distance,

defined by the ambiguity radius, Bδ(P) := {Q : Wc,p(Q,P) ≤ δ}. If `(z, θ) is the learning loss
function the worst-case loss quantity is obtained by Rδ(P, θ) = supQ∈Bδ(P) EQ[`(Z, θ)].
Counterfactuals. In a structural causal model, a counterfactuals represents the hypothetical
outcome of a variable under an alternative scenario, given a fixed set of observed conditions
or interventions on other variables. Counterfactual are derived from hard and soft
interventions in SCMs using do-calculus:

Hard interventions: fix features VI to constants τ , modifying causal connections for VI while keeping other

equations intact, represented as {Vi := τi, i ∈ I; Vi := fi(VPa(i),Ui), i /∈ I}.
Soft interventions: adjust equations by adding shifts ∆ without altering causal links

{Vi := fi(VPa(i),Ui) + ∆i}ni=1.

Hard and shift counterfactuals are defined as CF(v, τ ) and CF(v,∆), respectively, which are

central to this analysis. Counterfactuals with modified sensitive attributes, termed twins, are

essential for individual fairness. Twins are generated by altering a sensitive attribute from a to
a′, yielding a set {v̈a = CF(v, a) : a ∈ A} to assess fairness by comparing outcomes across

attribute values.

Causally Fair Dissimilarity Function

In the presence of causality and sensitive attributes, we expect that a fair metric should consider

two key properties:

Zero Dissimilarity for Twin Pairs: For any v ∈ V and a ∈ A, the dissimilarity d(v, v̈a) between
an instance and its twins is zero.

Guaranteed Similarity for Minor Perturbations: For every v ∈ V and any δ > 0, there exists an
ε such that for any sufficiently small intervention (‖∆‖ ≤ ε) on the non-sensitive attributes

(PA(∆) = 0), the distance d(v, CF(v,∆)) remains less than δ.

This function is called causally fair dissimilarity function (CFDF). In the case, that M is an ANM,

there exists the bijection map g : U → X from exogenous to endogenous space such that

x = g(u). If PX (u) the projection of vector u to the non-sensitive part UX then CFDF d can

be represented as a dissimilarity function dX dependent solely on the non-sensitive components

UX i.e.,

d(v, v′) = dX (PX (g(v)), PX (g(v′))).

We have below Assumption 1. for the feature space and CFDF:

1. The CFDF is defined as d(v, v′) =
∥∥PX (g(v)) − PX (g(v′))

∥∥, where ‖.‖ is a some norm.

2. Cost function over Z has form c((v, y), (v′, y′)) = d(v, v′) + ∞ · |y − y′|.
3. The ambiguity set is defined as: Bδ(P) = {Q ∈ P(V) : Wc,p(P,Q) ≤ δ}, for p ∈ [1,∞).

Causally Fair Distributionally Robust Optimization

Theorem 1 (Causally Fair Strong Duality). Let P be probability distribution and ψ : V → R be

upper semi-continuous and L1-integrable function, then following duality holds:

sup
Q∈Bδ(P)

{
E
v∼Q

[ψ(v)]
}

= inf
λ≥0

{
λδp + E

v∼P

[
sup
a∈A

ψλ(v̈a)

]}
,

where ψλ(v) is defined as

ψλ(v) := sup
∆∈X

{ψ(CF0(v,∆)) − λpd(v, CF0(v,∆))} ,

and CF0 is counterfactual regarding parent-free SCM M0.

Theorem 2 (Higher Order Linear Loss). Given Assumptions, let M be a linear SCM and the loss

function `(z, θ)p, where `(z, θ) is of the form h(y − 〈θ, v, )〉 or h(y · 〈θ, v, )〉 for functions h(t) such
as |t|, max(0, t), |t − τ |, or max(0, t − τ ) for some τ ≥ 0, and p ∈ [1,∞). Then the DRO problem

can be reduced to:

Rδ(PN , θ) =



(
Rcf
δ (PN , θ)

1
p + δ

∥∥∥PX (MTθ)
∥∥∥

∗

)p
, diam (A) < ∞

(
R(PN , θ)

1
p + δ

∥∥∥PX (MTθ)
∥∥∥

∗

)p
, s.t. PA(MTθ) = 0; diam (A) = ∞

whereM is the corresponding matrix for the linear map g−1 and

Rcf
δ (P, θ) = E

v∼P

[
sup
a∈A

`(v̈a, y, θ)

]
is a counterfactual loss function.

Theorem 3 (Nonlinear Loss). Let p = 1, M be linear SCM with matrix M corresponding to map

g−1, and `(z, θ) be a loss function of the form h(y − 〈θ, v〉) for regression and h(y · 〈θ, v〉) for
classification, where h has the following two properties:

1. h is Lipschitz on R with Lh constant, i.e., |h(t2) − h(t1)| ≤ Lh|t2 − t1|, ∀t1, t2 ∈ R.
2. There exists sequence of {tk}∞

k=1 goes to ∞ such that for each t0 ∈ R we have

limk→∞
|h(t0 + tk) − h(t0)|

|tk|
= Lh.

The DRO formula has the below formulation:

Rδ(PN , θ) =


Rcf
δ (PN , θ) + δLh

∥∥∥PX (MTθ)
∥∥∥

∗
, diam(A) < ∞

R(PN , θ) + δLh

∥∥∥PX (MTθ)
∥∥∥

∗
, s.t. PA(MTθ) = 0; diam(A) = ∞

Theorem 4 (Finite Sample Guarantee). With mild assumptions for θ̂ droN we have:

Rδ(P∗, θ̂ droN ) − inf
θ∈Θ

Rδ(P∗, θ) ≤ N−1/2
[
c0 + c1δ

1−p + c2δ
1−pN−η+1/2 + c3

√
log(2/ε)

]
,

With probability at least 1 − 2ε. With C(L) denoting the Dudley entropy integral for the function
class {`(·, θ) : θ ∈ Θ}, the constants c0, c1 and c2 are identified as follows:

c0 := 96C(L), c1 := 96L · diam (V)p , c2 := 2pL · diam (V)p−1 ·Md, and c3 := 2
√

2 ×M.

Proposition (Approximation by Robust Optimization). Suppose A is a finite set and let

{(vi, yi)}Ni=1 be observational data. Under Assumption 1, assume that for the loss function `
there exist constants L,M ≥ 0 such that

|`(v, y, θ) − `(v′, y, θ)| < Ldp(v, v′) +M for all v, v′ ∈ V and p ∈ [1,∞).
For an arbitraryK ∈ N, consider the adversarial loss within the setting:

R̃adv
δ (PN ) := sup

(wik)i,k∈B̃δ

 1
NK

N∑
i=1

K∑
k=1

sup
a∈A

`(ẅika , yi, θ)

 ,

where the uncertainty set B̃δ is defined as:

B̃δ :=

(wik)i,k : 1
N

N∑
i=1

K∑
k=1

dp(vi, wik) ≤ δ, wik ∈ V

 .

Then, the DRO can be approximated by adversarial optimization as follows:

R̃adv
δ (PN ) ≤ Rδ(PN ) ≤ R̃adv

δ (PN ) + LD +M

NK
,

where D is independent of K .

Numerical Experiments

In our numerical studies, we assess the effectiveness of causally fair DRO, referred to as CDRO, in

mitigating individual unfairness. We compare CDRO’s performance against Empirical Risk Mini-

mization (ERM), non-causal Adversarial Learning (AL), and the Ross method. Our experiments use

real-world datasets, specifically the Adult and COMPAS datasets, as well as a synthetic dataset

based on a linear structural causal model (LIN).
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The figure displays the findings from our numerical experiment, assessing the performance of

DRO across different models and datasets. (left) Bar plot showing the comparison of models

based on the unfair area percentage (lower values are better) for ∆ = .05, where U∆ := P
(
{v ∈

V : ∃v′ ∈ Vs.t.d(v, v′) ≤ ∆ ∧ h(v) 6= h(v′)}
)
is the unfairness area measure. (right) Bar plot

comparing methods by prediction accuracy performance (higher values are better).

Main Contributions

Define a causally fair dissimilarity function, an individual fair metric incorporating causal

structures and sensitive attributes, along with its representation form.

Define a causally fair DRO problem with a causally fair dissimilarity function cost.

Present the strong duality theorem for causally fair DRO.

Provide the exact regularizer for linear SCM under mild conditions for the loss function in

regression and classification problems.

Estimate the first-order causally fair DRO regularizer for non-linear SCM.

Provide the relation between classical robust optimization and causally fair DRO.

Demonstrate that under unknown SCM assumptions, by estimating the SCM or cost function,

we have finite sample guarantees for convergence of empirical DRO problems.
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