Protected Test-Time Adaptation via
Online Entropy Matching: A Betting Approach

ML deployment in the wild is a wild challenge

* ML models demonstrate unexpected degradation when facing unfamiliar environments

* Want to enhance robustness to test-time drifting data in an online manner
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ViT Model
ImageNet(-C)

e Challenges
(1) Lack of up-to-date labeled data
(2) Test instances are not available a-priori (sudden/continual shift)

Our solution: from monitoring to adaptation

This work
(1) How can we alert that the model “behaves” differently?
(2) How to use this info. to correct the model’s “behavior”?
— without annotating new samples
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Problem setup: test-time adaptation

* Source domain: in-dist. labeled data (X5,Y") ~ Py
X® € X: covariates (e.g., an image)
Ys €{0,1,..,K}: labels (e.g., tricycle)

* Target domain: a stream of unlabeled test points (th, ?),j =1,2,...

th ~ P{ is obtained by applying an unknown “shifting” function T; to a fresh st

e T; can vary over time

J Source Target

(ex. ImageNet) (ex. ImageNet-C)
Assumptions (invariance)

Despite the shift T(x°) | 9
* The label remains the same p OF &
* The prediction difficulty

(uncertainty) remains the same XS xt

Background: self-training at test time

Input: a pre-trained classifier fg fitted to labeled source data

Stream of test points
(unlabeled)

Self-supervised
loss

» State-of-the-art loss: entropy minimization

* Main issue: overconfident predictions

— bad calibration, even if applied to in-distribution data
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Proposition: It’s a fair game (non-negative martingale)
- No shift? capital will not grow in expectation
- Significant capital growth? strong evidence for shift

Gain evidence for distribution drift
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Our Approach: Build Invariance via
Online Entropy Matching

Key principle in domain adaptation
drive invariance to shifts
through distributional matching

Key observation
pre-trained classifier’s entropy
reflects dist. shifts: lack of invariance
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Source entropy Z° = £°"t (f;(X*)), evaluated on in-distribution data
fg : a pre-trained model

Target entropy Z; = £°" (f, (X)), evaluated online
fo : self-trained model

Adapt the model by matching the distribution of 7° and th onlineforallj = 1,2, ...

Online Entropy Matching

How can we match the entropy distributions online (dist. is changing over time)?

Drift Anti-drift Robust
detection adaptation prediction

Fool the drift detection tool

Bet money on how much the model’s test
entropies deviate from source entropy dist.

Theorem: entropy matching (optimal transport)
If the bet is ideal = true likelihood ratio, the anti-drift
correction is the optimal transport map from target to

source ents. (w.r.t.Wass. distance)

POEM: algorithm _emmmy

Let’s play a game. Start with an initial “toy money”, S; = 1
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., 1) Place a bet on how much the coming entropy will deviate from the source ent. dist.
E 2) Collect a test point X and compute its entropy Z{ = £°™ (f (X))
é 3) Reveal the truth (how?)
4) You win the bet? your wealth S; is increased; otherwise, it’s decreased
é 5) Anti-drift correction: derive an adapted-entropy Z] s.t.
2 if we rewind the experiment, the same betting strategy will result in less profit
o ~ ~\2
— < 6) Self-training: update f; by minimizing £match (th(B),Zj) = % (th(H) - Z)
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Continual shifts: varying corruptions

* Segments of 1,000 examples from each corruption, severity 5 (highest)

source time

avg. accuracy
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ViT Model
ImageNet(-C) * Superior accuracy * Faster adaptation (powerful betting)

Single shift: severity level 5 (highest)

* Apply adaptation on the whole ImageNet-C test set, for each corruption
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Superior performance across the board

In-distribution test data: comparing to state -of-the-art
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“No-harm” effect

* Same accuracy and calibration as the pre-trained model
* Minimal change in model parameters
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