Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach

Shalev Shaer* Yaniv Romano Yarin Bar* Technion - Israel Institute of Technology

ML deployment in the wild is a wild challenge

- ML models demonstrate unexpected degradation when facing unfamiliar environments
- Want to enhance robustness to test-time drifting data in an online manner

Challenges

- (1) Lack of up-to-date labeled data
- (2) Test instances are not available a-priori (sudden/continual shift)

Our solution: from monitoring to adaptation

This work

- (1) How can we alert that the model "behaves" differently?
- (2) How to use this info. to **correct** the model's "behavior"?
- → without annotating new samples

Problem setup: test-time adaptation

- Source domain: in-dist. labeled data $(X^s, Y^s) \sim P_{XY}^s$
- $X^s \in \mathcal{X}$: covariates (e.g., an image) $Y^s \in \{0,1,\ldots,K\}$: labels (e.g., tricycle)
- Target domain: a stream of unlabeled test points $(X_i^t,?)$, j=1,2,... $X_i^t \sim P_X^t$ is obtained by applying an unknown "shifting" function T_i to a fresh X_i^s
- T_i can vary over time

Assumptions (invariance) Despite the shift

- The label remains the same
- The prediction difficulty (uncertainty) remains the same

Background: self-training at test time

Input: a <u>pre-trained</u> classifier $\hat{f}_{\widehat{\theta}}$ fitted to labeled source data

- State-of-the-art loss: **entropy minimization**
- Main issue: overconfident predictions
- → bad calibration, even if applied to in-distribution data

Our Approach: Build Invariance via Online Entropy Matching **Key observation**

Key principle in domain adaptation drive invariance to shifts through distributional matching

pre-trained classifier's entropy reflects dist. shifts: lack of invariance

Source entropy $Z^s = \ell^{\text{ent}}(\hat{f}_{\widehat{\theta}}(X^s))$, evaluated on in-distribution data $\hat{f}_{\widehat{ heta}}$: a pre-trained model

Target entropy $Z_i^t = \ell^{\text{ent}}(f_{\theta}(X_i^t))$, evaluated online f_{θ} : self-trained model

Adapt the model by matching the distribution of Z^s and Z_i^t online for all j=1,2,...

Online Entropy Matching

How can we match the entropy distributions <u>online</u> (dist. is changing over time)?

correction is the optimal transport map from target to

source ents. (w.r.t.Wass. distance)

POEM: algorithm

- Significant capital growth? strong evidence for shift

- No shift? capital will not grow in expectation

Continual shifts: varying corruptions

• Segments of 1,000 examples from each corruption, severity 5 (highest)

Single shift: severity level 5 (highest)

Apply adaptation on the whole ImageNet-C test set, for each corruption

In-distribution test data: comparing to state -of-the-art

"No-harm" effect

- Same accuracy and calibration as the pre-trained model
- Minimal change in model parameters

References

- Vladimir Vovk (2021). Protected probabilistic regression. In Technical report
- Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (2020). Tent: Fully test-time adaptation by entropy
- Glenn Shafer and Vladimir Vovk (2019). Game-theoretic foundations for probability and finance. In Wiley Series in Probability and Statistics Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statistics and safe anytime-valid inference (2021). In
- Statistical Science, 38(4):576-601
- Aaditya Ramdas and Ruodu Wang. Hypothesis testing with e-values (2024). In arXiv Preprint • Peter Grünwald, Rianne de Heide, and Wouter M Koolen. Safe testing (2020). In IEEE Information Theory and Applications Workshop (ITA),
- Francesco Orabona and Dávid Pál. Scale-free online learning (2018). In Theoretical Computer Science,716:50–69

* Equal Contribution