ﬁ. NEURAL INFORMATION
. PROCESSING SYSTEMS

i

MAGIS: LLM-Based Multi-Agent
Framework for GitHub Issue Resolution

Wei Tao', Yucheng Zhou?, Yanlin Wang?®, Wengiang Zhang', Hongyu Zhang?*, Yu Cheng?®

TFudan University 2 University of Macau 3 Sun Yat-sen University

4 Chonggqing University ®> The Chinese University of Hong Kong

NEURAL INFORMATION
PROCESSING SYSTEMS

Develop

<> ,
’ Deploy

Requirement DeS|gn

Software Life Cycle

NEURAL INFORMATION
PROCESSING SYSTEMS

Develop

<> ,
’ Deploy

Software Life Cycle at GitHub O

Issue Design

“Oracle” Retrieval

Model % Resolved % Apply
Claude 2 a8 o
ChatGPT-3.5 0.52 21.80
GPT-4* 1.74 34.00
SWE-Llama 7b 3.01 65.52

SWE-Llama 13b 3.97 66.78

o\
°(

NEURAL INFORMATION
PROCESSING SYSTEMS

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Research Questions

* Why the Performance of Directly Using LLMs to Resolve

GitHub Issue is Limited?

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Why the Performance of Directly Using
LLMs to Resolve GitHub Issue is Limited?

» Locating the Files to be Modified
» Locating the Lines to be Modified

« Complexity of the Code Changes

Why the Performance of Directly Using
LLMs to Resolve GitHub Issue is Limited?

» Locating the Files to be Modified .y

314

File e&7™ Recall

Max. Content / BM25 Recall /
Model 13k 27k 50k 13k 27k 50k
Claude2 Ny 196 1.87 122 Avg. 2958 4441 5106

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Why the Performance of Directly Using
LLMs to Resolve GitHub Issue is Limited?

 Locating the Lines to be Modified

Zn)ZZR o |18is €] N 336’3H
Zz, O(e? Si —I_)

Coverage Ratio =

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Why the Performance of Directly Using
LLMs to Resolve GitHub Issue is Limited?

 Locating the Lines to be Modified

—————————

! 7 i GPT-35
: | GPT-4
I | Claude-2

——————————

Frequency

> o Z;n:o HS@,: ei) N [sh, ejH
Z-?:O(Ei —s5; + 1) 3

Coverage Ratio =

—————————

! 1
1
0.0 0.2 0.4 0.6 08 | 1.0/
Llne]—Ocatlng Coverage Ratlo ________

NEURAL INFORMATION
PROCESSING SYSTEMS

Why the Performance of Directly Using
LLMs to Resolve GitHub Issue is Limited?

« Complexity of the Code Changes

LILM # Files # Functions # Hunks # Added LoC # Deleted LoC # Changed LoC
GPT-3.5 —17.57 —17.57 —0.06 —0.02 —0.03 —0.53"
GPT-4 —25.15 —25.15 —0.06 —0.10 —0.04 —0.21
Claude-2 ~ —1.47 —1.47 —0.11 —0.09° —0.07" —0.44

" The correlation between the index and the issue resolution is significant (P-value < 0.05).

More Complex, More Difficult

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

How to better use LLMs for the task?

SNV,

. .NEURAL INFORMATION
PROCESSING SYSTEMS

Our Framework

Project Repository
Manager Custodian

r»-»....@;p-»

Review }

<>

-— e e mmwm

- = o
p N o c
J (o™~ - ; -
@ N o * |3 <[> %
: N L see) |2 B
g \»J A -
Human : Locate) Kick-off L e T . :
\ Code Files Puild aTeam Meeting :
f Planning j : Coding E

NEURAL INFORMATION
PROCESSING SYSTEMS

Agent Role Design

® 8 0 0

@A /7 "

Project Repository
Manager Custodian

Developer QA Engineer

;".’gé:'\"'

NEURAL INFORMATION

' PROCESSING SYSTEMS
o

! Relevance

©

@R

Repository -
Custodian . Issue Summaries

Locate Code Files

=

Memory

+ Commit Me

7 Code Chang?)

B

<

<

Candidate Files k

Code Files Summaries

BM25 & Top

\

Y

Issue

<P

Candidate Files

<

. django/db/backends/postgresql/schema.py

\ i
k))

' names ["lll"]
Task I

an SQLite3 migration issue.
appropriate database backend code is
being edited.

. For SQLite3 migrations involving

quoted db_table names, update t "'""
‘_remake_table and related metH ———

Task II

Django Database Specialist
Developer I

2

with a strong background in database
migrations and management, specifically
with comprehensive experience using
sQLite3....

Alex Rossini

Developer II

—_
django/db/backends/sqlite3/schema.py » Build a Team @
- an ¢)(---) » “am
. The code file seems to be targeting M S
</> PostgreSQL ("psycopg2", SQL syntax) anager
e ;iszfzuthe ..a seasoned Django backend developer Work Plan

AN

- Y

SQLite3 migrations can fail when used quoted =

. Identify all occurrences in the Q

db_table. (Django#30664) codebase where ‘db_table' is quoted S

If model's Meta db_table is quoted, e.g. directly and ensure it is provided ..a detail-oriented software engineer -

"table_with_quoted_name", SQLite3 migration with this without quotes. with proficient knowledge in Django and =

table creation with can fail with . In the ‘DatabaseSchemaEditor" class, database management, specifically =
django.db.utils.OperationalError: near ! update the ' remake table’ method to ‘ sQLite3.

"table_with_quoted_name": syntax error... handle quoted ‘db_table' names [N [y ~F 0Q

correctly ...

2

Oliver...

Djang...

Alex ...

ED

Oliver...

Meeting Started £
9 NEURAL INFORMATION

PROCESSING SYSTEMS

Good morning, everyone. Thank you for joining today’s meeting. We are here to address the operational error encountered during SQLite3 migrations when dealing with quoted
db_table names. Our goals are twofold: First, to ensure that the instructions each team member has received are clear and adequate to collectively resolve this issue. Second,
to assess whether ocur tasks can be carried out in parallel or, if not, to establish a logical sequence for task completicon. We need to look into modifying potentially
affected files, including 'django/db/backends/sqlite3/schema.py’ and 'django/db/backends/postgresql/schema.py'. Let’s start by summarizing our current understanding of the
problem and the solution strategy we have in place. I'1l then open the floor for input, specifically looking to identify any missing pieces or dependencies among tasks. Let’s
aim to keep this discussion productive and focused. Shall we begin with you, Django Database Specialist, to give us an overview of the status quo?

As you've menticned, the operaticnal error that we are facing is due to directly quoted table names in the “db_table” option when working with SQLite3. This issue arises
during migration if the table has at least one foreign key. The syntax error is caused by the double quoting of the “db_table” in the ~CREATE TABLE® statement. My plan is to
locate and modify the directly quoted “db_table” in our codebase, change the "_remake_table” method in the ~DatabaseSchemaEditor”™ class to handle these table names correctly,
and ensure our SQL statement generation accommodates table names with quotes without leading to errors. I will extensively test these changes to make sure they do not
introduce regressions or interfere with foreign key relationships. I will document all changes and explain my approach to all team members for transparency and future
reference. If there is nothing missing from my plan or any dependencies that I have overlooked, I believe I can start working on this problem.

Thank you, Django Database Specialist, for your insightful overview. Your plan sounds comprehensive and perfectly addresses the technical tasks for the database side of
things. As I understand it, you're planning on modifying the code that generates SQL to deal with quoted table names correctly, especially during SQLite3 migraticns involving
foreign keys.

To add to that, my part of the plan involves updating the "_remake_table” method and related functions to handle quoted table names correctly, ensuring that they're not
double-quoted if they are already quoted. I will also refactor any PostgreSQL-specific attributes to suit SQLite.

Apart from that, a very critical part of my plan is the creation of a test to reproduce the issue and test the soclution. This is essential to avoid this problem from
recccurring in the future, and to ensure ocur fix is, indeed, effective. My approach includes designing a test that simulates a migration involving a model with a quoted
"db_table”, and validating the fix by comparing the generated SQL against the expected result, using “assertEqual()” to confirm matching values.

In summary, I believe our combined efforts will ensure a comprehensive solution to the quoted “db_table” migration issue. Please chip in if there are any parts you believe we
may have overlooked or specifics that we need to coordinate. Otherwise, I believe we are all set to kick off our tasks.

Thank you, Django Database Specialist and Alex Rossini, for your clear overviews. It seems that we're on the same page regarding the individual strategies for addressing the
migration issues with quoted table names. Django Database Specialist, your role will involve adjusting the "DatabaseSchemakditor™, and Alex, you'll be responsible for
creating tests to ensure that the issue is resolved and does not reoccur.

Before we proceed, I want to ensure there are no overlaps or blocking dependencies in our efforts. It seems both of your tasks are closely related and might benefit from
close coordination, especially considering the shared use of the "_remake_table” method and the need for comprehensive testing.

Let's briefly discuss if there's a logical order for these tasks that could optimize our workflow. Does the code refactoring need to be completed before we can effectively
draft the test cases, Alex? Or can these two tasks be done in parallel with pericdic check-ins to synchronize your developments? If we find that a sequence is required, we
will then formalize the steps to take moving forwards.

Also, while focusing on SQLite3, let's remember to consider if any changes might inadvertently affect PostgreSQL operations, as we are dealing with shared files.

Once we have clarified this, we can establish a timeline and checkpoints for our progress and ensure that everyone has what they need to begin their work. If there are any
tools, permissions, or additional information required, please raise them now so we can address them promptly.

t‘:@'!

O

(% Thank you for your insights, Oliver. In response to your question, the order of operations does indeed matter. First, we should identify occurrences of “db_table quoted ® " NEURAL INFORMATION
. directly, as this will give us a clear picture of the changes that need to be made in the “DatabaseSchemaEditor® class. Next, the ~_remake_table” method should be updated to PROCESSING SYSTEMS

Djang... handle quoted ~db_table” names correctly. Once we have those two steps completed and verified, we can modify the methods dealing with SQL statement generation.

At this stage, Alex would be able to start writing the tests. This sequence would alsoc prevent us from having to rewrite tests or adjust them to accommodate changes made to
other parts of the system during the process. Given the scope of work, pericdic checkpoints would be beneficial for the team to sync up and verify that everything is
proceeding as planned.

As you've mentioned, we are dealing with shared files. Any changes we make may inadvertently affect PostgreSQL or other database backends. To aveid this, we should ensure
that our changes are specific to SQLite operations and do not inadvertently change the behavior for other databases.

Regarding needed resources, I'm comfortable with the provided developer access permissions and available documentaticn. If anything else comes up, I'll make sure to
communicate promptly. If there are no other questions or concerns, I believe we're ready to proceed.

{% ### Alex Rossini

Thank you, Django Database Specialist, for articulating the sequence of our workflow clearly. I agree with your suggested order of operations. Once you've adjusted the
Alex ... ‘DatabaseSchemaEditor™ and “db_table™ operations, I can certainly follow up with the test creation. I'll also ensure our solution doesn't affect other database backends by
only modifying SQLite-specific code paths.

As for resources, I am also comfortable with the access permissions and development stack provided. I also think it would be beneficial to have regular check-ins to validate
our progress and maintain transparency.

Unless there are any further clarifications, I am ready to begin my part of the work as scon as Django Database Specialist has completed theirs.

o4

Oliver...

Based on our discussion, it appears we have a clear plan and an agreed-upon sequence of tasks. Django Database Specialist will start by identifying quoted “db_table”
occurrences and updating the "DatabaseSchemaEditor™. Once that's in place and we confirm the intended behavior, Alex Rossini will follow up with the test creation to ensure

our changes have resoclved the issue without affecting other database backends.

To maintain momentum and ensure no critical issues arise, let's schedule regular check-ins. These will serve as opportunities to synchronize our progress, address any
unforeseen challenges, and verify that our changes work as expected across different database backends.

The first checkpoint will be set after the initial adjustments to the “DatabaseSchemaEditor™ are completed by Django Database Specialist. At that point, we will review the
changes and, if everything is on track, Alex will proceed with writing the tests.

If there are no objections or further points to discuss, I'1l go ahead and schedule these checkpoints and provide everyone with an updated workflow chart. After that, we can
adjourn the meeting and start working on our respective tasks. Django Database Specialist, you have the green light to begin, and Alex, please prepare for test development
while staying tuned for updates on the initial fixes. If anyone encounters problems or requires assistance, please reach out as soon as possible, so we can address any
hiccups promptly.

Let's aim to meet our objectives with efficiency and a collaborative spirit. Thank you all for your contributions to the discussion, and let's get to work! <FINISH>

£

Thank you all for your contributions. In conclusion, we'll proceed as follows: Django Database Specialist will first identify and modify the instances of directly quoted
‘db_table® names and update the '_remake_table’ method. Once these tasks are complete and verified, Alex will follow with the test development to ensure our solution is

Oliver... ngbust and does not affect other database backends. We will implement regular check-ins to synchronize our efforts and address any issues promptly. With our plan in place and
resources confirmed, let's begin working on our respective tasks. If any unforeseen requirements arise, please communicate them at the earliest convenience. Meeting
adjourned.

Meeting Finished 2

(1) Django Database Specialist

django/db/backends/sqlite3/schema.py

Developer I Developer II

BEBEREREER

Locate
Code Lines -

gryggane

Task I Code Task II
RO Generation
) Ny
Main
=t tpy \
Work Plan

The code changes appear to fix the issue of excessive quoting in
SQLite3 table names. The developer carefully and correctly
strips any quotes potentially around “db_table" before @
constructing a new model and creating a new table. This change d
is consistent with the existing codebase and improves the

QA functionality of the “_remake_table’ method. All new changes En i:glr I
Engineer I seem functional with no syntax errors found ... g

No changes necessary.

AA»
@ Pass All Necessary Tests ,i},

@ Alex Rossini

TODO

e Locate
Code Lines

7 I o 1
...... For the suggested tasks,
PostgreSQL seems to be targeted
instead of SQLite3 which is
required as per the issue. It
should be addressed properly.
Quotes in db_table names should
be handled in " _remake_table”
method. Finally, please provide
the code snippet of your test
reproducing the issue and
verifying the fix. Without
actual code, a detailed review
or evaluation about its
correctness, ...

Requires major revisions.

A

o‘.,r\'wé"&*o,

> .N EURAL INFORMATION
PROCESSING SYSTEMS

django/db/backends/postgresql/schema.py

- Code
- Generation

8utpoo

21BN py
The code change is large and
seems to switch from PostgreSQL
to SQLite. The "_remake_table”
function has been significantly
changed and now uses SQLite
syntax. However, the switch from
one database backend to another
is not advised, as the support
for SQLite that is added might
break PostgreSQL functionality.
If the goal is to target SQLite3
for this issue, ..In conclusion,
you should reconsider the need

to modify the PostgresQL .. x

Requires major revisions:

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Research Questions

« How Effective is Our Framework?

NEURAL INFORMATION
PROCESSING SYSTEMS

How Effective is Our Framework?

Method % Applied Y% Resolved
GPT-3.5 11.67 0.84
Claude-2 49.36 4.88
GPT-4 13.24 1.74
SWE-Llama 7b 51.56 2.12
SWE-Llama 13b 49.13 4.36
MAGIS 97.39 13.94
MAGIS (w/o QA) 92.71 10.63
MAGIS (w/o hints) 94.25 10.28

MAGIS (w/o hints, w/o QA) 91.99 8.71

How Effective is Our
Framework?

34
35
36
37

38
39

34
35
36

37
38
39
48
41

django/contrib/admindocs/utils. py

@@ -34,7 +34,8 @@ def trim_docstring(docstring):

return °°
Convert tabs to spaces and split into lines
lines = docstring.expandtabs().splitlines()
indent = min{len({line) - len{line.lstrip()) for lime in lines if line.lstrip())
Determine the minimum indentation (first line doesn't count):
indent = min(len(line) - len(line.lstrip()) for line in lines[1:] if line.lstrip())
trimmed = [lines[@].1lstrip()] + [line[indent:].rstrip{) for line in lines[1:]]

return "yn".join(trimmed).strip()

Figure 16: Case from Django (ours) for issue |

W ': 20 I django/contrib/admindocs/utils.py

43
49

S T R

w o

25
26
27

+

B8 -3,6 +3,7 @@

import re

from email.errors import HeaderParseError
from email.parser import HeaderParser
from inspect import cleandoc

from django.urls import reverse
from django.utils.regex_helper import _lazy_re_compile
@@ -24,26 +25,13 @@ def get_view_name(view func):

return mod_name + '.° + view_name

def trim_docstring(docstring):

uniformly trim leading/trailing whitespace from docstrings.

Based on hitps://www.python.org/dev/peps/pep-8257/#handling-docstring-indentation
if mot docstring or not docstring.strip():

return °"
Cconvert tabs to spaces and split into lines
lines = docstring.expandtabs().splitlines()
indent = min{len{line} - len({line.lstrip()}) for line in lines if lime.lstrip())
trimmed = [lines[@].lstrip()] + [line[indent:].rstrip() for line im lines[1:]]

return "\n".join{trimmed).strip(}

def parse_docstring{docstring):

Parse out the parts of a docstring. Return (title, body, metadata).
docstring = trim_docstring(docstring)
if mot docstring:
return "7, 7, {}
docstring = cleandoc(docstring)
parts = re.split(r'\n{2,}", docstring)
title = parts[e]
if len{parts) ==

django/contrib/admindocs/views.py

B8 -1,5 +1,6 @@

import inspect

from importlib import import_module
from inspect import cleandoc

from pathlib import path

from django.apps import apps
@@ -256,7 +257,7 @@ def get_context_data(self, **kwargs):

continue
verbose = func.__doc__
verbose = verbose and (
utils.parse_rst{utils.trim docstring(verbose), 'model’, _{’model:’) + opts.model_name)

utils.parse_rst{cleandoc(verbose), ‘model’, _('model:’) + opts.model_name)

Show properties and methods without arguments as fields.
& otherwise, show as a 'method with arguments’.

Figure 15: Case from Django (gold)

NEURAL INFORMATION
PROCESSING SYSTEMS

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Research Questions

« How Effective is Our Planning Process?

NEURAL INFORMATION
PROCESSING SYSTEMS

How Effective is Planning Process?

0.701 - — -« BM25
0.69
0.68

0.67 1

Recall

0.66 1

0.65 1

0.64 1

File Number

Comparison of recall scores between Ours and BM25.

NEURAL INFORMATION
PROCESSING SYSTEMS

How Effective is Planning Process?

Not Resolved
Resolved

50

40

Number

20

10

3
Correlation Level

Distribution of the correlation score between the generated
task description and the reference code change.

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Research Questions

« How Effective is Our Coding Process?

NEURAL INFORMATION
PROCESSING SYSTEMS

How Effective is Coding Process?

Ours
7 GPT-4
Claude - 2

Frequency

0.0 0.2 04 0.6 0.8 1.0
Line Locating Coverage Ratio

Comparison of line locating coverage
between MAGIS (Ours) and baselines.

NEURAL INFORMATION
PROCESSING SYSTEMS

How Effective is Coding Process?

Table 3: Correlation between the complexity indices and the issue resolution.

Method #Files # Functions # Hunks # Added LoC # Deleted LoC # Changed LoC

GPT-4 —25.15" —25.15 —0.06 —0.10 —0.04 —0.21
MAGIS —-155 —1.55 —0.12 —0.04° —0.06 —0.57

" The correlation between the index and the issue resolution is significant (P-value < 0.05).

NNNNNNNNNNNNNNNNN
SSSSSSSSSSSSSSSSS

Conclusion

« Empirical analysis of LLMs in resolving GitHub issues.
* A novel LLM-based multi-agent framework.

« Experiments & Analysis.

NEURAL INFORMATION
PROCESSING SYSTEMS

THANKS!

	幻灯片 1: MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: Research Questions
	幻灯片 6: Why the Performance of Directly Using LLMs to Resolve GitHub Issue is Limited?
	幻灯片 7: Why the Performance of Directly Using LLMs to Resolve GitHub Issue is Limited?
	幻灯片 8: Why the Performance of Directly Using LLMs to Resolve GitHub Issue is Limited?
	幻灯片 9: Why the Performance of Directly Using LLMs to Resolve GitHub Issue is Limited?
	幻灯片 10: Why the Performance of Directly Using LLMs to Resolve GitHub Issue is Limited?
	幻灯片 11: How to better use LLMs for the task?
	幻灯片 12: Our Framework
	幻灯片 13: Agent Role Design
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18: Research Questions
	幻灯片 19: How Effective is Our Framework?
	幻灯片 20: How Effective is Our Framework?
	幻灯片 21: Research Questions
	幻灯片 22: How Effective is Planning Process?
	幻灯片 23: How Effective is Planning Process?
	幻灯片 24: Research Questions
	幻灯片 25: How Effective is Coding Process?
	幻灯片 26: How Effective is Coding Process?
	幻灯片 27: Conclusion
	幻灯片 28

