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Motivation

min
x∈Rd

f(x) ▷ f is convex and differentiable

M.-M. Adaptive gradient descent without descent, ICML-2020

AdGD

xk+1 = xk − αk∇f(xk)

Lk = ∥∇f(xk)−∇f(xk−1)∥
∥xk − xk−1∥

αk = min
{√

1 + αk−1

αk−2
αk−1 ,

1
2Lk

}

Questions:
• Is the first termin the update of αk necessary?

• Is 2 in the update of αk necessary?

• Can we extend this algorithm to min f(x) + g(x)
with prox-friendly g?
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Question 1

xk+1 = xk − αk∇f(xk)

Lk = ∥∇f(xk)−∇f(xk−1)∥
∥xk − xk−1∥

αk = min
{√

1 + αk−1

αk−2
αk−1,

1
2Lk

}

αk = 1
cLk

Theorem. There is a convex, 1-smooth function f , such that for any c ⩾ 1, there is a point x0

where this algorithm diverges.

Answer: The first term is needed (maybe in another form).
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Question 2

xk+1 = xk − αk∇f(xk)

Lk = ∥∇f(xk)−∇f(xk−1)∥
∥xk − xk−1∥

αk = min
{√

1 + αk−1

αk−2
αk−1 ,

1
2Lk

}

• The second term 1
2Lk

can be replaced by 1
√
2Lk

with exactly the same guarantees as
before.

• The full update can be replaced by ..., which allows to use a fixed step αk = 1
L
.
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Question 3

min
x∈Rd

f(x) + g(x)
▷ f is convex and differentiable
▷ g is convex lsc and prox-friendly

Prox-AdGD
xk+1 = proxαk

(xk − αk∇f(xk))

Lk = ∥∇f(xk)−∇f(xk−1)∥
∥xk − xk−1∥

αk = min
{√

1 + αk−1

αk−2
αk−1,

1
√
2Lk

}
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