
§ LM-based recommender have been widely explored.
• Extensive world knowledge and strong reasoning ability.
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§ Existing LM-based recommenders format recommendation as 
language generation task. 
• Convert user sequence into language prompt.
• Pair sequence with target positive item.
• Train with language modeling loss. 

q SFT can’t fully utilize preference data.
q Lack of ranking information.
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§ Building on SFT, S-DPO:
• We make progress on aligning LMs to recommendations 

by introducing alignment stage, inspired by LM paradigm.
• Instill ranking information into LM in the light of DPO.
• Generalize DPO to Softmax-DPO, utilizing multi-negative 

preference data.

Supervised Fine-Tuning Direct Preference Optimization Softmax-DPO
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X: “After watching [History Sequence], which movie do you think the person will choose next from  [Item List]?” 
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§ Derivation of S-DPO:
• DPO is derived from Bradley-Terry model and Plackett-Luce model.
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• Generalized from Plackett-Luce model, a preference distribution of multi-negative 
settings can be derived, which takes the following form:  

• The loss for multi-negative preference alignment can be derived by replacing Bradley-Terry 
model  with our multi-negative preference distribution:  



§ Theoretical Analysis:
• Connect BPR loss with DPO loss
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• Connect sofmtax loss with S-DPO loss

• Gradient Analysis
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• S-DPO achieves significant improvements in sequential recommendations.

• Mining hard negatives brings effective gradients.
• Multi-negatives can provide more reward to preferred items.
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• The superiority of S-DPO can be generalized to other LM backbones

• S-DPO have comparable effectiveness and better efficiency compared with multi-negative DPO variants
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