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Overview Rapid predictions (inference) with learned reduced models HOAM compared to time-conditioned flow-based models
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We learn models of population dynamics of physical systems that feature stochastic and mean-
field effects and that depend on physics parameters.

= Building on the Benamou-Brenier formula and action matching [2], we infer population
dynamics from a simulation-free variational objective.

= The inferred gradient fields can then be used to predict the populations dynamics for unseen
physics parameters.

= Higher-order quadrature is critical for accurately estimating the training objective.
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Parameter-dependent population dynamics b - Ptoir p1
Population dynamics of X; ,, ~ pt,, can be described by the continuity equation //

Opty = —V - (,OtanSt”u) , forallt € [0,1],u € D, (1)

flow-based modeling

with the initial condition pr—¢ ,, =: po , and gradient vector field Vs ;.

In our case the continuity equation (1) depends on the physics parameter y ~ v.
In HOAM, time ¢ in the SDE used for generating samples is the same time as of the physics

Pto. 11 problem, thus the costs of inference scales with the trajectory length.

t u u | u u u
Pto.j 0y HOAM stabilizes training with higher-order quadrature | | N , | N ,
1,1 = Top: Bump-on-tail (t = 20) instability. Middle top: two-stream (¢t = 20) instability. Middle
vsto,u //’> bottom: Strong Landau damping (¢ = 4). Bottom: Nine-dimensional chaos.
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The continuous variational form of (1) reads 3 A/\/\." AY J\/v :
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We discretize this using a combination of Monte-Carlo and higher-order quadrature: = 10° ] : : ]
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where w,, are numerical quadrature weights and t,, are the corresponding nodes.
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After training, new samples can be generated by integrating _ ] _
d Challenging loss estimation HOAM accurately predicts the energy growth in the transient regime and oscillations at later
EXW = Vst (Xt p)  Xopu ~ popu- (4) times. The competing flow-based methods are less accurate.
. . S o = The loss (2) only defines s up to an additive constant that can change in time. If £ — s(¢)
Wg s:how t.hat.the numerical quadrature in HO.A.\I\./I IS crltlca.l for accurately estimating the minimizes (2), then so does ¢ + s(t) + f(¢) for any f : [0,1] = R: Speedups in inference step (predictions)
training objective from sample data and for stabilizing the training process. !
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