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models generate critical mistakes/hallucinations  
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unreliable predictions  
no clear indication of when and how badly models might fail



the most common mitigation strategy is to steer 
the LLM with the aid of a reward model or 
directly from human preferences



adding redundancy to improve quality 

a simple decoding-time strategy: 

(1) an LLM generates multiple hypotheses 
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adding redundancy to improve quality 

adding redundancy as an intermediate step increases 
the chances of returning an acceptable answer

redundancy

a simple decoding-time strategy: 

(1) an LLM generates multiple hypotheses 

(2) a reranker selects the most appropriate one
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… also important in communication theory

adding redundancy to decrease the error rate in noisy channels is a 
cornerstone of communication theory

MacKay, 2002; Cover and Thomas, 2012; Hamming, 1950; Reed and Solomon, 1960; Gallager, 1962; Berrou et al., 1993
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… also important in communication theory

adding redundancy to decrease the error rate in noisy channels is a 
cornerstone of communication theory

a message block is sent multiple times, the decoder uses majority 
voting to recover the original message with high probability

repetition codes

the same idea underlies more sophisticated error-correcting codes

MacKay, 2002; Cover and Thomas, 2012; Hamming, 1950; Reed and Solomon, 1960; Gallager, 1962; Berrou et al., 1993
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we draw a parallel between these two worlds

LLM generator G

sender

x1 ∈ 𝒳(q)

x2 ∈ 𝒳(q)

xN ∈ 𝒳(q)

y1

y2

yN

q
⋮

the sender transmits  message descriptions in parallel through noisy channels, leading to  
potentially corrupted hypotheses

N N
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we draw a parallel between these two worlds

LLM generator G reranker R

sender

x1 ∈ 𝒳(q)

x2 ∈ 𝒳(q)

xN ∈ 𝒳(q)

y1

y2

yN

q receiver ̂x = g(y1, …, yN)
⋮

the sender transmits  message descriptions in parallel through noisy channels, leading to  
potentially corrupted hypotheses

N N

the receiver decodes the message by ranking the descriptions and selecting the one found to be 
most reliable
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: set of 
acceptable answers 
given a query 

𝒳(q) ⊆ Σ*

q



a simple case: independent hypotheses, perfect reranker

perfect reranker
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Perr(N; q) = ℙ(g(Y1:N) ∉ 𝒳(q) ∣ q)

= 𝔼X1:N|q[
N

∏
i=1

P(Yi ∉ 𝒳(q) ∣ Xi)

=ϵ

]
= ϵN → 0

q

X1

X2

XN

⋮

Y1

Y2

YN

⋮

independent hypotheses

reality is more complex: rerankers are not perfect, hypotheses are not independent 

asymptotically 
error-free (AEF)
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 is the gold ranking and  the Kendall tau distanceπ0 d(π, π0)
mallows reranker

ℙ(π; π0, λ) = exp(−λd(π, π0))/Z(λ)

 is a scale parameter 
 perfect reranker,  random reranker

λ
λ → ∞ λ → 0
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 is the gold ranking and  the Kendall tau distanceπ0 d(π, π0)
mallows reranker

ℙ(π; π0, λ) = exp(−λd(π, π0))/Z(λ)

 is a scale parameter 
 perfect reranker,  random reranker

λ
λ → ∞ λ → 0

Perr(N; q) = {
ϵ  if λ = 0
[e−λ(1 − ϵ) + ϵ]N − e−λN

1 − e−λN  otherwise

= 𝒪((e−λ(1 − ϵ) + ϵ)N) → 0
still AEF!



beyond perfect rerankers

q

X1

X2

XN

⋮

Y1

Y2

YN

⋮

we provide conditions under which this protocol is asymptotically error-free

independent 
hypotheses

perfect

Mallows

Zipf-Mandelbrot

 (exponentially fast!)err → 0

 (exponentially fast!)err → 0
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beyond independent hypotheses

q

X1

X2

XN

⋮ τ
α

β

Y1

Y2

YN

⋮

we provide conditions under which this protocol is asymptotically error-free

independent 
hypotheses

perfect

Mallows

Zipf-Mandelbrot

 (exponentially fast!)err → 0

 (exponentially fast!)err → 0

err → 0

dependent 
hypotheses 

(Beta prior) 

perfect

Mallows

Zipf-Mandelbrot

 (as a power law!)err → 0

err → 0

err → 0

reranking law
s for language generation: a com

m
unication-theoretic perspective



to design error-free protocols, it is sufficient to 
verify if they are error-free in the simpler case 
where hypotheses are independent

(proposition 4)



we validate our reranking laws empirically  reranking law
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LLM generator reranker datasets

code generation DeepSeek-Coder 7B MBR-exec MBPP

machine translation TowerInstruct 13B MBR decoding, 
QE reranking TICO-19

math/commonsense 
reasoning code-davinci-002 self-consistency SVAMP, StrategyQA
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code generation and machine translation



thank you

https://github.com/deep-spin/reranking-laws


