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Problem formulation

Let A ∈ Rn×d, b ∈ Rn, and x∗ = argminx ∥Ax− b∥2.
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Aim: Find an “ϵ-accurate” estimate to x∗, but with space
constraints. If

∥Ax̃− b∥2 ≤ (1 + ϵ)∥Ax− b∥2,

then we say x̃ is an ϵ-accurate estimate to x∗.
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Direct methods store A, requiring Õ(nd) space, rendering them
unsuitable for memory-constrained computing systems when
n ≫ d.
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Existing matrix sketching-based methods provide an ϵ-accurate
x̃ but at least require Õ(d2/ϵ) space [5].
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Our contribution

We propose an algorithm which provides an ϵ-accurate x̃ in

Õ(d2) space in distributed computing environments.

In distributed setup, our work provides an ϵ-accurate x̃

within 2 parallel data passes.

Our work is based on debiasing techniques to recover

nearly unbiased estimators of x∗ using Leverage Score

Sparsified (LESS) embeddings [6].

Our theoretical analysis relies on proving higher

moment-restricted Bai-Silverstein inequalities, which could

be of independent interest to Random Matrix Theory

(RMT) community [3].
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Matrix sketching for least squares

Let sketching matrix S ∈ Rm×n, with m ≪ n, and consider x̃ as:

x̃ = argmin
x

∥SAx− Sb∥2.

Storing SA requires Õ(md) space, potentially much lesser than

Õ(nd). Choices for S could be anything from

Subgaussian matrices [1].

Randomized Hadamard transforms [2].

Sparse Matrices, e.g. Count Sketch [4].

Subsampling e.g. approximate Leverage score subsampling

[7],

and many others.
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Leverage score subsampling for least squares

The ith leverage score of A denoted by ℓi(A) is defined as
ℓi(A) = a⊤

i (A⊤A)−1ai.

A A

Leverage score
approximation

Subsampling

SA

Figure: Visual illustration of Leverage score subsampling

Let x̃ = argminx ∥SAx− Sb∥2. Then for m = Õ(d/ϵ):

∥Ax̃− b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.
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Leverage score subsampling for least squares

The ith leverage score of A denoted by ℓi(A) is defined as
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i (A⊤A)−1ai.
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For m = Õ(d/ϵ) : ∥Ax̃− b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.

Space requirement: Õ(d2/ϵ). For small ϵ, this space
requirement can be restrictive.
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Our approach

Construct smaller sketches with a much smaller bias than

the subsampling sketch.

Leverage distributed averaging to recover an ϵ-accurate

estimate to x∗.

Turns out that in this distributed setup we can reduce the

sketch size m and recover a nearly unbiased x̃.

Unfortunately, subsampled sketches still require m = Õ(d/
√
ϵ).

We provide an algorithm that requires only Õ(d2) space.
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Find ϵ-accurate x̃ in distributed settings

Reducing m and averaging multiple estimators for x∗ leads to
lesser space requirement.

A
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x̃1
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x̃2

S3A

x̃3

and so on

SqA

x̃q

Figure: Averaging for Least squares via Leverage score subsampling
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Find ϵ-accurate x̃ in distributed settings
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Let x̃ = 1
q

∑q
i=1 x̃i and let q → ∞. Then,

∥AE[x̃] − b∥2︸ ︷︷ ︸
Bias

≤ (1 + ϵ)∥Ax∗ − b∥2 ≪ E∥Ax̃− b∥2︸ ︷︷ ︸
Variance

.

Our contribution: We propose an algorithm to recover an
ϵ-accurate x̃ in Õ(d2) space in distributed settings.
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Our algorithm: Least squares using LESS embeddings

We construct S ∈ RÕ(d)×d and every row of S is now formed by
mixing (compressing) Õ(1/ϵ) rows from A.

A

Subsample

Õ(d/ϵ) × d

Õ(1/ϵ) rows

Õ(1/ϵ) rows

Õ(1/ϵ) rows

Compress
S1A

x̃1

Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.
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Our results

Let x̃ = 1
q

∑q
i=1 x̃i. Then for q = 1

ϵ we have,

∥Ax̃− b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.

Importantly, SiA requires Õ(d2) space.

We show that in streaming settings and distributed

environments, an ϵ-accurate estimate to x∗ can be obtained

in 2 data passes.

We extend our results to distributed settings where data is

uniformly partitioned across q machines.
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Detailed technical result

Theorem (Main result (informal) from the paper)

Given streaming access to A ∈ Rn×d and b ∈ Rn, within 2

passes over (A,b), in Õ(nnz(A) + ϵ−1d2) time and Õ(d2) bits

of space, we can construct a randomized estimator x̃ for the

least squares solution x∗ such that:

(Bias)
∥∥AE[x̃] − b

∥∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2,

(Variance) E
[
∥Ax̃− b∥2

]
≤ 2 ∥Ax∗ − b∥2.
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Thank you!
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