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Problem formulation

Let A € R™4 b € R", and x* = argmin, [|[Ax — b||%.
A b
al
al
a !

Aim: Find an “e-accurate” estimate to x*, but with space
constraints. If

IA% —b[* < (1+¢)Ax —b|%,

then we say X is an e-accurate estimate to x*.
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Problem formulation

Let A € R™*4 b € R", and x* = argmin, [|Ax — b||%.

A b
b;

i
[24]
Direct methods store A, requiring O(nd) space, rendering them

unsuitable for memory-constrained computing systems when
n > d.
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Problem formulation

Let A € R™*4 b € R", and x* = argmin, [|[Ax — b|%.

A b

2l b1
a,
a, (b

Existing matrix sketching-based methods provide an e-accurate
% but at least require O(d?/¢) space [5)].
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Our contribution

We propose an algorithm which provides an e-accurate x in

O(d?) space in distributed computing environments.

o In distributed setup, our work provides an e-accurate x

within 2 parallel data passes.

@ Our work is based on debiasing techniques to recover
nearly unbiased estimators of x* using Leverage Score
Sparsified (LESS) embeddings [6].

@ Our theoretical analysis relies on proving higher
moment-restricted Bai-Silverstein inequalities, which could

be of independent interest to Random Matrix Theory
(RMT) community [3].
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Matrix sketching for least squares

Let sketching matrix S € R™*™, with m < n, and consider X as:

% = argmin |[SAx — Sb||2.
X

Storing SA requires O(md) space, potentially much lesser than

O(nd). Choices for S could be anything from

Subgaussian matrices [1].

Randomized Hadamard transforms [2].

(]

Sparse Matrices, e.g. Count Sketch [4].

(]

Subsampling e.g. approximate Leverage score subsampling
(7],

and many others.
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Leverage score subsampling for least squares

The i** leverage score of A denoted by ¢;(A) is defined as
((A) —a] (ATA)!
A A

Subsampling

\\ SA

N A
IR

Leverage scor
Approximation Y
- M

.,

.
.,
.
.,

Figure: Visual illustration of Leverage score subsampling

Let X = argmin, |[SAx — Sb||2. Then for m = O(d/e):

|A% —b|* < (1 +¢)|Ax" — b|.
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Leverage score subsampling for least squares

The i** leverage score of A denoted by ¢;(A) is defined as
li(A) =a] (ATA) a;.
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Figure: Visual illustration of Leverage Score subsampling

For m = O(d/e) : ||[Ax — b||> < (1 + ¢)||Ax* — b|%.

Space requirement: O(d?/¢). For small e, this space
requirement can be restrictive.
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Our approach

o Construct smaller sketches with a much smaller bias than

the subsampling sketch.

o Leverage distributed averaging to recover an e-accurate

estimate to x*.

@ Turns out that in this distributed setup we can reduce the

sketch size m and recover a nearly unbiased X.

Unfortunately, subsampled sketches still require m = O(d/+/€).

We provide an algorithm that requires only (~)(d2) space.
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Find e-accurate x in distributed settings

Reducing m and averaging multiple estimators for x* leads to
lesser space requirement.

Figure:
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Find e-accurate x in distributed settings

Reducing m and averaging multiple estimators for x* leads to
lesser space requirement.
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Figure: Averaging for Least squares via Leverage score subsampling



Find e-accurate x in distributed settings

Reducing m and averaging multiple estimators for x* leads to
lesser space requirement.
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Figure: Averaging for Least squares via Leverage score subsampling
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Find e-accurate x in distributed settings

X3 & -

and so on :
S;A
s+ -

Let x = % >7 % and

|AE[X] —b]* <
————

Bias
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let ¢ — oo. Then,

(14 ¢)|Ax* —b|? < E||Ax — b|%.
N———

Variance
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Find e-accurate x in distributed settings

X3 & -
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|AE[X] —b]* <
————

Bias

S1A
K. %
Filo A A s
A -
r(\\\\\\ S //:’;7\
RN 2.7
s N 2 ’
A 4
\\\ // SQA
\ ’
’ ~
- > X2

let ¢ — oo. Then,

(14 ¢)|Ax* —b|? < E||Ax — b|%.
N———

Variance

Our contribution: We propose an algorithm to recover an
e-accurate x in O(d?) space in distributed settings.
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Our algorithm: Least squares using LESS embeddings

We construct S € Ré(dlxd and every row of S is now formed by
mixing (compressing) O(1/¢€) rows from A.

A

Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.
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Our algorithm: Least squares using LESS embeddings

We construct S € Ré(dlxd and every row of S is now formed by
mixing (compressing) O(1/¢€) rows from A.
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Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.
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Our results

Let x = % 7 %;. Then for ¢ = 1 we have,
A% —b||? < (1+ ¢)||Ax* — b]%.

Importantly, S;A requires O(d?) space.

o We show that in streaming settings and distributed
environments, an e-accurate estimate to x* can be obtained

in 2 data passes.

@ We extend our results to distributed settings where data is

uniformly partitioned across ¢ machines.
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Detailed technical result

Theorem (Main result (informal) from the paper)

Given streaming access to A € R™% and b € R™, within 2
passes over (A, b), in O(nnz(A) + e *d?) time and O(d?) bits
of space, we can construct a randomized estimator X for the

least squares solution x* such that:

(Bias) |[|AE[X] —b|* < (1+ €)|Ax* — b]?,
(Variance) E[HAx—bH ] <2]jAx* —b|%
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Thank you!
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