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Open-world Semi-Supervised Learning (OwSSL)

Expensive and time-consuming labeling process limits real-world deep-learning
applications.

Semi-supervised learning (SSL) reduces the dependency on labeled data by
exploring the inherent structure of unlabeled data.

Existing SSL methods typically assume a closed-world where all classes possess
labeled instances.

A common case is the presence of novel classes in the unlabeled data.

Objective of OwSSL: classify seen-class samples, or discover novel-class samples
and clustering them.
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Challenges

Discover novel classes and assign instances to them. (clustering task)

Confirmation Bias: The model is biased towards seen classes because it has been
exposed only to instances from seen classes.

Synchronize the varying learning pace that result from the diverse learning style
between seen and novel classes. (novel class tend to be slower than seen class)

The learning of seen classes base on the supervision of ground-truth labels.
For unseen classes, the model can only learn from the clustering objective.
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Existing Works

Pairwise-similarity-based methodologies.

Construct a pairwise objective on representation space.
Pairwise similarity is calculated and proximity in the prediction of paired instances is
encouraged by Binary Cross-Entropy (BCE) loss.
Examples: ORCA [1], NACH [1], OpenLDN [2].

Contrastive-based methodlogies.

Construct unsupervised contrastive objective (source from SimCLR [3]) for all data
and supervised contrastive objective (source from SupCon [4]) for labeled data.
Examples: GCD [5], SimGCD [6].

Other clustering techniques: Self-labeling-based, TRSSL [7].
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Flowchart of OwMatch

Figure 1: Overview of the OwMatch framework, which is fundamentally composed of three
objectives: a) standard supervised objective; b) clustering objective, which discovers
novel-class samples; c) confidence objective, which balances the different learning pace
between seen and novel classes.
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Clustering Objective

Consider the input data x(i), denote p(i),q(i) ∈ RK as the model prediction and soft
self-label for x(i), the clustering loss for x(i) is defined as Lcls(x

(i)) := H(q(i),p(i)),
where H refers to the Cross-Entropy.

Self-labeling to optimize q: Denote P,Q ∈ RK×N as the prediction and self-label for
{x(i)}Ni=1. Q is enforced to follow a desired partition by constraining it to belong to the
transportation polytope: Q1 := {Q ∈ RK×N

+ |Q1N = NP ,QT1K = 1N}, where 1v is
v -dimensional vector of all ones, P denotes the desired class distribution.

The self-label assignment generation can be understood as an optimal transportation
problem as minQ∈Q1 Tr(Q log(PT )).
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Conditional Self-labeling

Conditional Self-labeling

Core idea of conditional self-labeling method to refine the self-label assignment under
partial supervision. Specifically, we exploit the ground-truth in the labeled dataset and
introduce another constraint:

Q2 := {Q ∈ RK×N
+ |q(i) = y

(i)
gt , i = 1, . . . ,N l}, (1)

Combining these two constraints, we generate the conditional self-label assignment by
optimizing,

min
Q∈Q1∩Q2

Tr(Q log(PT )) + ϵE (Q), (2)

where E (·) is the entropy function, ϵ is a hyperparameter controlling the smoothness of
Q. We denote the optimal solution of (2) as Q̃.
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Conditional Self-labeling

Theoretical Analysis

Definition 1

Expectation of chi-square statistics (ECS) for µ̂ are defined as the population deviation
between the estimator of unlabeled class distribution µ̂ and its true distribution Pu:

ECS(µ̂) := E[χ2(A)] = E

[
K∑
i=1

(Ai − EP [Nu
i ])

2

EP [Nu
i ]

]
, (3)

where A are estimators based on N l
1,N

l
2, · · · ,N l

K , thus are still random variables.

Theorem 1

Consider two estimators for class distribution on unlabeled data, µ̂uncon and µ̂con, we
have µ̂uncon is a biased estimator and µ̂con is an unbiased estimator.
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Conditional Self-labeling

Theoretical Analysis

Theorem 2

Suppose ri :=
N l ·pli
N denote the ratio of label samples of the i-th class to the whole

samples, r :=
∑

i ri denotes the ratio of labeled samples to the whole samples. For
unlabeled sample size Nu, if

√
Nu > 1

max(|ri−r ·pui |,r ·pj )
for ∀i ∈ Cl ,∀j ∈ Cu, then

ECS(µ̂con) ≤ ECS(µ̂uncon).

Conclusion

Following rigorous statistical analysis, the generated label assignments from conditional
self-labeling method are closer to the true class distribution in the following scenarios:

Estimation based on large unlabeled sample size (Nu);

The difference between prior distribution P and class distribution of unlabeled
data Pu is not negligible.
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Open-world Hierarchical Thresholding

Confidence Objective

Unlabeled data are typically used to
enhance model performance through
consistency regularization [8]:

N∑
i=1

I(max(p(i)) ≥ τ)H(p̂(i),p(i)),

where τ is a scalar hyperparameter
denoting the threshold above which we
retain a one-hot pseudo-label p̂(i).

Figure 2: An illustration of the hierarchical
thresholding scheme, which involves first
estimating the overall learning conditions of
two groups and then hierarchically modulating
the thresholds in a class-specific manner.
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Open-world Hierarchical Thresholding

Hierarchical thresholding scheme

Group-wise learning condition for a set of classes Ci = Cs or Cn as

η(Ci ) =
1

NCi

N∑
i=1

max(p(i))I(p̂(i) ∈ Ci ), Ci = Cs , Cn, (4)

where NCi =
∑

I(p̂(i) ∈ Ci ) denotes the number of samples whose predictive labels p̂(i)

belong to the group Ci . Similarly, the class-wise learning conditions can be defined as

ζc =
1

Nc

N∑
i=1

max(p(i))I(p̂(i) = c), c = 1, . . . ,K , (5)

where Nc =
∑

I(p̂(i) = c) denotes the number of samples whose predicted labels
belong to the c-th class.
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Open-world Hierarchical Thresholding

Objective

We merge these two learning conditions and obtain the open-world hierarchical
threshold as τ(c) = ζc

maxc∈Ci ζc
· η(Ci ). And the confidence objective has the form of

Lconf =
1

N

N∑
i=1

I(max(p(i)) > τ(p̂(i))) · H(p̂(i), gθ(A(x(i)))). (6)

Together with the supervised objective Lsup = 1
N l

∑N l

i=1H(y
(i)
gt ,p

(i)) and clustering

objective Lcls =
1
N

∑N
i=1H(q̃(i),p(i)), the overall objective for OwMatch is defined as:

L = Lsup + Lcls + Lconf . (7)
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Main Result

Table 1: Average accuracy on the CIFAR-10/100 and ImageNet100 with 50% novel classes and
50% labeled data within seen classes.

Method CIFAR-10 CIFAR-100 ImageNet100

Seen Novel All Seen Novel All Seen Novel All

FixMatch [8] 71.5 50.4 49.5 39.6 23.5 20.3 65.8 36.7 34.9

DS3L [9] 77.6 45.3 40.2 55.1 23.7 24.0 71.2 32.5 30.8
CGDL [10] 72.3 44.6 39.7 49.3 22.5 23.5 67.3 33.8 31.9
DTC [11] 53.9 39.5 38.3 31.3 22.9 18.3 25.6 20.8 21.3
RankStats [12] 86.6 81.0 82.9 36.4 28.4 23.1 47.3 28.7 40.3
SimCLR [13] 58.3 63.4 51.7 28.6 21.1 22.3 39.5 35.7 36.9
UNO [14] 91.6 69.3 80.5 68.3 36.5 51.5 - - -
ORCA [15] 88.2 90.4 89.7 66.9 43.0 48.1 89.1 72.1 77.8
NACH [1] 89.5 92.2 91.3 68.7 47.0 52.1 91.0 75.5 79.6
OpenLDN [2] 95.7 95.1 95.4 73.5 46.8 60.1 89.6 68.6 79.1
TRSSL [7] 96.8 92.8 94.8 80.0 49.3 64.7 - - -
OpenCon [16] 89.3 91.1 90.4 69.1 47.8 52.7 90.6 80.8 83.8

OwMatch 93.0 95.9 94.4 74.5 55.9 65.1 91.7 72.0 81.8
OwMatch+ 96.5 97.1 96.8 80.1 63.9 71.9 91.5 79.6 85.5
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Ablation on Components

Table 2: Ablation study on datasets with both novel class ratio and label ratio of 50%. Here,
ConSL refers to conditional self-labeling, PLCR refers to consistency regularization, and
OwAT refers to an open-world hierarchical thresholding scheme.

Components CIFAR-10 CIFAR-100 Tiny-ImageNet

ConSL PLCR OwAT Seen Novel All Seen Novel All Seen Novel All

× × × 96.5 90.2 93.3 78.8 56.7 67.7 66.5 38.1 52.0
✓ × × 95.4 96.4 95.9 79.2 58.5 68.7 66.0 39.4 52.4
✓ ✓ × 96.3 97.3 96.8 80.1 59.4 69.6 68.6 42.0 54.2
× ✓ ✓ 97.1 90.4 93.8 80.7 59.7 69.9 69.7 41.4 54.6
✓ ✓ ✓ 96.5 97.1 96.8 80.1 63.9 71.9 68.8 42.4 55.0
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Practical and Robust Settings

Table 3: Performance on benchmarks with different imbalance factors (IF) with/without prior
class distribution.

Dataset Prior Uniform (IF=1) IF=10 IF=20

Seen Novel All Seen Novel All Seen Novel All

CIFAR10
w/ 96.5 97.1 96.8 93.7 72.1 82.5 92.9 70.1 80.9
w/o 96.9 90.9 93.9 95.8 66.5 80.3 95.3 64.2 78.8

CIFAR100
w/ 80.1 63.9 71.9 76.8 42.0 57.3 76.1 35.2 51.9
w/o 82.5 57.9 69.2 74.6 39.7 54.1 73.9 33.9 49.2

Tiny-ImageNet
w/ 68.8 42.4 55.0 61.7 25.1 41.6 62.4 21.7 38.3
w/o 69.6 40.6 54.8 61.0 24.9 40.1 61.3 20.3 36.9



Background Methodology Experiments References

Outlines

1 Background

2 Methodology
Conditional Self-labeling
Open-world Hierarchical Thresholding

3 Experiments

4 References



Background Methodology Experiments References

[1] Lan-Zhe Guo, Yi-Ge Zhang, Zhi-Fan Wu, Jie-Jing Shao, and Yu-Feng Li.

Robust semi-supervised learning when not all classes have labels.

Advances in Neural Information Processing Systems, 35:3305–3317, 2022.

[2] Mamshad Nayeem Rizve, Navid Kardan, Salman Khan, Fahad Shahbaz Khan, and Mubarak
Shah.

OpenLDN: learning to discover novel classes for open-world semi-supervised learning.

In European Conference on Computer Vision (ECCV), pages 382–401. Springer, 2022.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.

A simple framework for contrastive learning of visual representations.

In International conference on machine learning, pages 1597–1607. PMLR, 2020.

[4] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan.

Supervised contrastive learning.

Advances in neural information processing systems, 33:18661–18673, 2020.

[5] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman.

Generalized category discovery.



Background Methodology Experiments References

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7492–7501, 2022.

[6] Xin Wen, Bingchen Zhao, and Xiaojuan Qi.

Parametric classification for generalized category discovery: A baseline study.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16590–16600, 2023.

[7] Mamshad Nayeem Rizve, Navid Kardan, and Mubarak Shah.

Towards realistic semi-supervised learning.

In European Conference on Computer Vision (ECCV), pages 437–455. Springer, 2022.

[8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li.

Fixmatch: Simplifying semi-supervised learning with consistency and confidence.

Advances in neural information processing systems, 33:596–608, 2020.

[9] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou.

Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data.

In Proceedings of the 37th International Conference on Machine Learning, pages 3897–3906.
PMLR, November 2020.



Background Methodology Experiments References

[10] Xin Sun, Zhenning Yang, Chi Zhang, Keck-Voon Ling, and Guohao Peng.

Conditional gaussian distribution learning for open set recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13480–13489, 2020.

[11] Kai Han, Andrea Vedaldi, and Andrew Zisserman.

Learning to discover novel visual categories via deep transfer clustering.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR), pages
8401–8409, 2019.

[12] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman.

Automatically discovering and learning new visual categories with ranking statistics.

In International Conference on Learning Representations (ICLR), 2020.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.

A simple framework for contrastive learning of visual representations.

In International Conference on Machine Learning (ICML, pages 1597–1607. PMLR, 2020.
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