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¡ Fluids: easily deform, with complex dynamics

¡ Highly related to production and life:  Accurate prediction of future fluid evolution is of 
great significance in various fields

1.1 FLUID & ITS CHARACTERISTICS
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Weather forecasting 
and disaster warning

Aerodynamic design 
optimization

Prediction of underground 
oil and gas reservoir

Very Complex PDE！



¡ Empirical Models that Simplify Equations

Ø Empirical parameters and assumptions are used to decompose and approximate turbulent 
characteristics and viscous behaviour of fluids.

1.2 SIGNIFICANCE: THE DIFFICULTIES OF CFD — PART 1
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Reynolds-averaged Navier Stokes (RANS) equation[1]

information loss

depends on the hypothesis

[1] https://www.simscale.com/docs/simulation-setup/global-settings/k-omega-sst/



¡ Numerical Methods that Simplify Computation

Ø Define geometry and bounds, discretize into mesh by different methods, model physics, iteratively 
solve numerical equations, and analyse results.

1.2 SIGNIFICANCE: THE DIFFICULTIES OF CFD — PART 2
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partial observation substantial 
computational cost

[figs] https://cfd.direct/openfoam/computational-fluid-dynamics/

Neural Fluid Prediction 
(NFP) with Data-driven 

Deep Models



¡ Learning the mapping between variables (inputs) and solutions (outputs) of PDEs

¡ Encoding physical (PDE residuals) and data (prediction error) constraints into the loss function

1.3.1 NFP:  PHYSICS-INFORMED NEURAL NETWORKS
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R IC

BC u

training difficulties poor generalization

Raiss, et al. Physics-informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations. JCP 2019.



1.3.2 NFP:  NEURAL OPERATORS
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¡ Learn the mapping between two Banach spaces including function of input field and output field

¡ Encoding PDE parameters into the latent space then evolve with a theoretical method

high computational efficiency

easy to train

strong generalization

lacks interpretability

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021.



¡ Physical priors Research focus

Ø Insight 1:  Two perspectives[1] of fluid motion
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Eulerian Grid Observe at 
fixed locations

Change rate of local 
fluid w.r.t. time

Lagrangian
Particle

Track specific 
fluid elements

Change rate of moving 
element w.r.t speed

Combining them 
for spatiotemporal 
evolution modelling

Focus 1:

Focus 2:
Using multiscale model to 
perceive regional features

2.1 RECAP:  TWO PERSPECTIVES & MULTI SCALES

temporal

spatial
Ø Insight 2:  Different motion patterns at different scales

[1] White, F.M. Fluid Mechanics. McGraw-Hill, 2011.



¡ High Reynold number with intricate Boundary conditions

¡ Large-scale and Long-term
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2.2 TARGET:  COMPLEX SCENARIO & HARD PROBLEM

Learned Trajectory T + 2 T + 4 T + 6 T + 8 T + 10

Ocean salinity variation[1] in the Northwest Pacific (375 km × 625 km, daily)

T+0 T+2 T+4 T+6 T+8 T+10

Gas flow around multiple cylinders at high Reynolds number (Reynolds number:  1×10!)

[1] CMEMS and MDS. Global Ocean Physics Reanalysis. DOI: 10.48670/moi-00021, 2023.
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¡ Learn the mapping of functions at adjacent time within the function space on the field
Ø Given a bounded open subset 𝒟 ⊂ ℝ𝑑 in 𝑑-dimensional Euclidean space, the 𝑜 variables 

observed at time 𝑡, 𝒖$(𝒙):ℝ𝑑 → ℝ𝑜, can be viewed as a vector-valued function defined on
𝒟, forming the Banach space𝒰 𝒟;ℝ𝑜 .

Ø The model ℱ% with parameter 𝜃 is expected to fit the mapping within 𝒰:

𝛷: 𝒖$(𝒙) → 𝒖$&'(𝒙)

¡ Multi-step autoregressive joint optimization paradigm
Ø Input recent 𝑝 steps of observation, predict the next step. Replace old obs. with new pred.

U$ = 𝒖$()&', 𝒖$()&*, … , 𝒖$ → 𝒖$&', 𝑡 = 𝑝, 𝑝 + 1,…

Ø Uncertainty Loss are used to balance each step, enabling joint gradient backpropagation

3.1 DEEPLAG:  SETUP
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¡ Inter-scale information exchange
Ø Up-sampling and down-sampling to 

create new fuse neighboring scales

¡ Feature mapping within scale 𝑙
Ø The Lagrangian quantity 𝒉$+ and particle position 𝒑$+ aid Eulerian field 𝒖$+ to evolve

𝒖$&'+ , 𝒉$&'+ |𝒑$&'+ = 𝑓%
+(𝒖$+ , 𝒉$+ |𝒑$+ )

Ø Key particles are sampled based on the complexity of local dynamics

• Input multi-frame vorticity: 𝜻 = #𝒗"
#%

− #𝒗#
#&

• Sampled particles via its pointwise variance:

𝒑' ~ 𝑠𝑡𝑑(𝜻)

3.2.1 DEEPLAG:  MULTI-SCALE ARCHITECTURE

EuLag Block
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V
Q

KQ
K
V

Interpolate

Aggregate

Lagrange Space

Euler Space

Global 
Dynamics

Local 
Dynamics

LagToEu Attention EuToLag Attention

Eulerian Evolution Lagrangian Tracking 

!-th Scale
Inputs3.2.2 DEEPLAG: EULAG BLOCK

¡ Lagrangian (L) → Eulerian (E)

Ø Distance-weighted cross-attention

𝒖!"# = 𝒖! + softmax
𝑾$𝒖!(𝑾%𝒉!)𝑇

𝐶
0 𝑴 𝑾&𝒉!

¡ Eulerian (E) → Lagrangian (L)

Ø Global:  Distance-weighted cross-attention

𝒉!"#, ()*+,) = 𝒉! + softmax
𝑾′$𝒉!(𝑾′%𝒖!)𝑇

𝐶
0 𝑴 𝑾′&𝒖!

Ø Local:  Eulerian features are interpolated at tracked particle coordinates to obtain 𝒉$&', -./0-
Ø MLP is used to fuse global and local results

Self-Attn O(n^2)

EuLag-Attn O(n)
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¡ Benchmarks

Ø Bounded Naiver-Stokes

• 13.8% relative promotion

Ø Ocean Current

• 30 days prediction, 12.8% relative promotion

Ø 3D Smoke

• 34.4% relative promotion

4  EXPERIMENTS

Bounded Naiver-Stokes

Ground  Truth DeepLag

Ocean Current

3D Smoke

Strong performance 
on all tasks within 

the linear complexity
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Ground Truth

(T = 20)
DeepLag (Ours) U-Net LSM FactFormer

Prediction

Error

Timewise Relative L2
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e 

L2

Predict Step

4.1 BOUNDED NAIVER-STOKES

Ground Truth

(T = 20)
DeepLag (Ours) U-Net LSM FactFormer

Prediction

Error

Timewise Relative L2

Re
la

tiv
e 

L2

Predict Step

Precisely illustrate the vortex and give a reasonable 
motion mode of the Kármán vortex phenomenon[1]

[1] Wille, R. Karman vortex streets. Advances in Applied Mechanics, 1960.
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¡ Video of Long-term prediction (100 frames)

4.1 BOUNDED NAIVER-STOKES

DeepLag 
(Ours)

Ground  Truth FactFormer FNO Galerkin 
Transformer

GNOT LSM U-Net
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¡ Learned particle movement

4.1 BOUNDED NAIVER-STOKES
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4.2 OCEAN CURRENT

Ground Truth

(T = 20)
DeepLag (Ours) U-Net LSM FactFormer

Prediction

Error

Estimated Particle Trajectory

(T = 10 ~ 20)

Ground Truth

(T = 20)
DeepLag (Ours) U-Net LSM FactFormer

Prediction

Error

Estimated Particle Trajectory

(T = 10 ~ 20)

Performs well in real-world, large-scale fluids, which 
usually involve more inherent stochasticity

Provides a clear depiction 
of the Kuroshio pattern[1]

[1] Tang, et al. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 2021.

The movement of upper particles 
matches the sinuous trajectory of the 

Kuroshio current



17

4.2 OCEAN CURRENT

¡ Video of Long-term prediction (100 frames)

DeepLag 
(Ours)

Ground  Truth FactFormer FNO Galerkin 
Transformer

GNOT LSM U-Net
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4.3 3D SMOKE 

Ground Truth
(T = 20)

DeepLag 
(Ours) U-Net LSM FactFormer

Prediction
Error

DeepLag 
(Ours) U-Net LSM FactFormer

Prediction
Error

Ground Truth
(T = 20)

Ground Truth

(T = 20)
DeepLag (Ours) U-Net LSM FactFormer

Prediction

Error

FNO GNOT

More gain on 
3D scenario
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4.4.1 ABLATIONS 

¡ Module removing

Ø w/o Lagrangian particle tracking, w/o Eularian feature evolving, w/o learnable sampling

¡ Hyperparameter sensitivity

Ø Adjust number of {tracking particles, spatial scales, latent dimensions}

¡ Swap the order of EuToLag and LagToEu cross-attention
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4.4.2 GENERALIZATION 

¡ On high-resolution data

¡ On unseen boundary conditions
256×256, U-Net relative L2: 0.0600

Model Relative L2

U-Net 0.217

DeepLag 0.203

Ground Truth (T = 20) U-Net zero-shotDeepLag zero-shot



5  SUMMARY AND FUTURE  WORK
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Feature:

Ø Addressing the interpretability of learned 
particle trajectories by aligning with 
Lagrangian numerical methods

Ø Introducing motion decomposition 
mechanisms and fluid-specific principles for 
specific scenarios to develop downstream 
specialized methods

A data-driven DL approach with 
physical interpretability through 
Deep Lagrangian Dynamics



OPEN SOURCE
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https://github.com/thuml/DeepLag

Complete benchmarks & code & models

https://github.com/thuml/DeepLag


THANKS FOR LISTENING!

mql22@mails.tsinghua.edu.cn


