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Multi-subject Personalization

Previous personalization methods often struggle to handle multiple subjects
simultaneously, suffering from identity mixing during composition of subjects.
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References (a) DreamBooth (DB) (b) Cut-Mix (c) DB + Region Control (d) MuDlI (Ours)

For example, DreamBooth generates images of dogs with mixed identities.



Our Contributions

We present MuDI, a multi-subject personalization framework that prevents
identity mixing even for highly similar subjects.

* Training: Data augmentation method that randomly composes segmented subjects

* Inference: Initialization techinque using mean-shifted random noise created from
segmented subjects.

* New dataset and metrics to faciliate the evaluation of multi-subject personalization.




Multi-subject Personalization with MuDI
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Qualitative Comparison

Textual DreamBooth
Inversion DreamBooth + Region Cut-Mix Ours

,._:‘:/’

Reference Images




Human Evaluation and Metrics
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Multi-Subject Fidelity Text Fidelity
Method D&C-DST D&C-DINO?T ImageRewardt CLIPs™
Textual Inversion 0.116 0.132 -0.149 0.227
DreamBooth (DB) 0.371 0.388 0.579 0.255
DB+Region 0.340 0.379 0.349 0.245
Cut-Mix 0.432 0.460 -0.287 0.225
Ours 0.637 0.610 0.770 0.263




MuDlI is Model-Agnostic

Our framework can be used for any pre-trained text-to-image diffusion models
(e.g., SDXL, FLUX) as our training/inference methods are architecture-agnostic.

Reference Images FLUX w/ DreamBooth FLUX w/ MuDI (Ours)
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Personalizing 11 Subjects with Single Model

MuDI can personalize 11 different dogs and cats all at
once with fine-tuning a single model!

... playing in the fields of flowers.
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