
1

FlashAttention-3: Optimizing FlashAttention for H100 GPUs

1. New Hopper Instructions
- WGMMA: higher throughput
- TMA: faster loading from gmem <-> smem, saves registers

2. Asynchrony
- Builds on asynchronous wgmma and TMA
- Inter-warpgroup overlapping: warp-specialization, pingpong
- Intra-warpgroup overlapping: softmax and async matmul

3. Low-precision – FP8: layout conformance, incoherent processing

Upshot: 1.6-3x speedup, up to 85% utilization with BF16, 1.3 PFLOPS with FP8

Jay Shah*, Ganesh Bikshandi*, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao

Background: Attention Mechanism

O = Softmax(QKT)V

2

Q
(N x d)

K
(N x d)

x

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

Softmax 𝑠1, ⋯ , 𝑠𝑁 =
𝑒𝑠1

σ𝑖 𝑒𝑠𝑖
, ⋯ ,

𝑒𝑠𝑁

σ𝑖 𝑒𝑠𝑖

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 𝑄 𝐾𝑇

(N x N)
A = Softmax(𝑆)

(N x N)

Attention scales quadratically in sequence length N

How FlashAttention Reduced HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling and online softmax: Restructure algorithm
to load block by block from HBM to SRAM to
compute attention.

(2) Recomputation: Don’t store attn. matrix
from forward, recompute it in the backward.

Challenges:

(1) Compute softmax normalization without access
to full input.

(2) Backward without the large attention matrix from
forward.

3

Summary
Challenge: Optimizing FlashAttention for Modern Hardware - H100

4

FA2 only gets to 35-40% utilization (no WGMMA, no TMA)

5

New Instructions: WGMMA (Warpgroup MMA) & TMA

wgmma uses 4 warps (= 1
warpgroup) and is necessary to
reach peak throughput on H100.

TMA: accelerate gmem ->
smem, saves registers as TMA
is issued by a single thread

WGMMA and TMA integrate into a warp-specialized pipelined design for both GEMM and attention.

6

Asynchrony: Overlapping GEMM and Softmax

Why overlapping?
Example: headdim 128, block size 128 x 192
FP16 WGMMA: 2 x 2 x 128 x 192 x 128 = 12.6 MFLOPS, 4096 FLOPS/cycle -> 3072 cycles
MUFU.EX2: 128 x 192 = 24.6k OPS, 16 OPS/cycle -> 1536 cycles

MUFU.EX2 takes 50% the cycles of WGMMA.
FP8 is even worse: WGMMA and MUFU.EX2 both take 1536 cycles!

We want to be doing EX2 while tensor cores are busy with WGMMA.

7

Inter-warpgroup Overlapping of GEMM and Softmax

Easy solution: leave it to the scheduler!

This works reasonably well, but we can do better

Pingpong scheduling with synchronization barriers (bar.sync):
580 TFLOPS -> 640 TFLOPS

8

Intra-warpgroup Overlapping of GEMM and Softmax

2-stage pipelining: 640 TFLOPS -> 670 TFLOPS (but higher register pressure)

9

Low-precision: FP8

FP8 doubles WGMMA throughput, but trades off accuracy

10

Incoherent Processing to Smooth out Outlier Features

For random orthogonal matrix M (where M M^T = I):
Q -> QM -> quantize(QM)
K -> KM -> quantize(KM)
Dot product QK^T is preserved, but outliers are ”spread out”

Fast transform (O(d log d), not
O(d^2), can be fused with rotary
embedding “for free”

BF16 Benchmark: 1.6-2.0x speedup

11

Without causal mask With causal mask

BF16 Benchmark: reach up to 850 TFLOPS

12

Without causal mask With causal mask

FP8 Benchmark: up to 1.3 PFLOPS

13

Without causal mask With causal mask

Summary

Code: https://github.com/Dao-AILab/flash-attention

Fast and accurate attention optimized for modern hardware

Key algorithmic ideas: asynchrony, low-precision

Upshot: faster training, better models with longer sequences

Summary – FlashAttention-3

14

https://github.com/HazyResearch/flash-attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

