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Setting

e & C X -sample space
o of C X -target space
 Unknown function f over

Goal: Learn f within &/ by sampling from &

We call this Transductive Active Learning




Transductive Active Learning
“only learn what is needed to solve a given task” ’

(Inductive) Active Learning
“learn as much as you can”

=&
studied in most prior works / k




Algorithms for transductive active learning

Probabilistic model of f:

» prior p(f)
e likelihood p(D | f) of data D

» posterior p(f | D)

Algorithms: select data to minimize posterior uncertainty within &/



Contributions

Algorithms: select the next sample to minimize posterior uncertainty within &f

When f is a Gaussian process these algorithms are tractable:

« Theory: rates for the uniform convergence of uncertainty over &/
 Applications:
e (1) active fine-tuning of neural networks

e (2) safe Bayesian optimization
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lllustration on a Gaussian process with RBF kernel



6(x) = posterior variance at x €

a,f(x)—>0asn—> 00

e.d., by repeatedly
sampling x

| z

what about the point x'?
\\ o2(x") = n3(x") = Var[f(x') | f(S)]
S IS the irreducible uncertainty:




Theory

Uncertainty bound (informal)
Forevery x' € of:  62(x") — n3(x") < Cyy s(m)\/n

irreducible — 0O for many kernels

where y, o(n) = max I(f(); y(X))

| X|=n

Agnostic error bound (informal)
if f € Z (), then for every x” € &/ with probability at least 1 — :

| fix") = ELfx) | D11 < B2(5) [n5x") + Cryy s(n)//n]

prediction irreducible reducible
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Applications oo \:

@ Active fine-tuning EfficientNet-B0O pre-trained on ImageNet

Given:

e pre-trained model ______________
e & - training set f-—j

o of - test set

Goal: Leverage representations of
pre-trained model to accelerate
learning a good predictor of .
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O Active fine-tuning of neural networks
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Applications

O Active fine-tuning ® Safe Bayesian optimization
Given: Task: Optimize unknown function

o have to be satisfied at all times.
e & - training set

» & - pessimistic safe set
« o - test set

Goal: Leverage representations of + 9, - set of potential safe optima

pre-trained model to accelerate Theory: Tighter guarantees that
learning a good predictor of «. generalize to continuous settings.
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® Safe Bayesian optimization
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Thanks for your attention!

jonas.huebotter@inf.ethz.ch
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