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Background
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Vision-Language foundation models (e.g., CLIP[1]) have
recently shown their power in transfer learning owing
to large-scale image-text pre-training.

[1] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision. (ICML2021)
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These models are typically pre-trained on general
domain data, and struggle to generalize well on
diversified target domain data (e.g., fine-grained)
due to large domain shift.
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Motivation
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Existing methods typically adapt the representation of
foundation models to downstream tasks. However, it is
challenging to achieve good generalization by adopting
such a single model, especially under low-shot regime.
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Alternatively, expert models from different modalities,
tasks, networks and datasets contain complementary
knowledge with CLIP-like models, and can be utilized
to further boost the generalization ability of
foundation models.



Contributions
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 Knowledge Versatility 

• TransAgent leverages 11 heterogeneous agents from vision, language and multi-modal research.

• The diversified knowledge are complementary with CLIP-like models.

 Transfer Flexibility

• TransAgent leverages the proposed Mixture-of-agents (MoA) gating mechanism to adaptively integrate

external knowledge of different agents in each modality.

 Deployment Efficiency

• Multi-source distillation is applied to transfer knowledge of heterogeneous agents into CLIP.

• Along with prompt learning, TransAgent achieves deployment efficiency without a heavy model ensemble.



Method: Overview
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Method: Vision Agent Collaboration (VAC)
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VAC integrates visual knowledge via MoA gating
and transfers the knowledge through layer-wise
feature distillation:

𝐖𝐖𝑉𝑉 = MLP(Concat({𝐕𝐕𝐴𝐴(𝑖𝑖)})),   𝐕𝐕𝐴𝐴 = ∑𝑖𝑖𝐖𝐖𝑉𝑉(𝑖𝑖)𝐕𝐕𝐴𝐴(𝑖𝑖)

ℒVAC = |𝐕𝐕 − 𝐕𝐕𝐴𝐴|



Method: Language Agent Collaboration (LAC)
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LAC enhances the textual representations through
class-specific feature distillation between the
prompted textual feature and the gated textual
feature:

𝐖𝐖𝑇𝑇 = MLP(Concat({𝐓𝐓𝐴𝐴(𝑗𝑗)})),   𝐓𝐓𝐴𝐴 = ∑𝑗𝑗𝐖𝐖𝑇𝑇(𝑗𝑗)𝐓𝐓𝐴𝐴(𝑗𝑗)

ℒLAC = |𝐓𝐓 − 𝐓𝐓𝐴𝐴|



Method: Multi-modal Agent Collaboration (MAC)
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We extract the cross attention maps from the T2I
agents and then obtain the score vectors through
LogSumExp (LSE) pooling:

𝐒𝐒𝑇𝑇𝑇𝑇𝑇 = log(�
𝑘𝑘

exp(𝐌𝐌𝑘𝑘))

We compute the score vectors from the I2T
agents as the cosine similarity between the
projected visual feature and the LLM’s textual
feature:

𝐒𝐒𝐼𝐼𝐼𝐼𝐼 =
exp(𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑉𝑉 , 𝑓𝑓𝑇𝑇))

∑𝑖𝑖=1𝐶𝐶 exp(𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑉𝑉 , 𝑓𝑓𝑇𝑇𝑖𝑖))



Method: Multi-modal Agent Collaboration (MAC)
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Finally, we perform score distillation between the
learned score vectors and the gated score vectors
to further align the learnable prompts:

𝐖𝐖𝑆𝑆 = MLP(𝐌𝐌𝐴𝐴),   𝐒𝐒𝐴𝐴 = ∑𝑛𝑛𝐖𝐖𝑆𝑆(𝑛𝑛)𝐌𝐌𝐴𝐴(𝑛𝑛)

𝐌𝐌𝐴𝐴 = Concat({𝐒𝐒𝑇𝑇𝑇𝑇𝑇, 𝐒𝐒𝐼𝐼𝐼𝐼𝐼})

ℒMAC = KL(softmax(𝐒𝐒𝑃𝑃)||softmax(𝐒𝐒𝐴𝐴))



Method: Multi-source Knowledge Distillation
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Finally, we combine all the distillation loss from multiple sources, achieving
heterogeneous agent collaboration for knowledge transfer:

ℒTransAgent = ℒCE + 𝜆𝜆1ℒMAC + 𝜆𝜆2ℒMAC + 𝜆𝜆3ℒMAC

where 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 are hyperparameters.

By fine-tune the learnable prompts with distillation strategy, all the agents can be
unloaded and the modality-specific gates can be abandoned in the inference phase,
which largely boosts deployment efficiency.



Experiments
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 Comparisons on base-to-novel generalization

Our TransAgent exhibits strong generalization
ability and outperforms previous SOTA on all
datasets. The best results are bolded.



Experiments
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 Comparisons on few-shot classification

TransAgent demonstrates SOTA performance for
all few-shot settings on different datasets, which
proves promising learning capability even under
extremely limited supervision.



Experiments
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 Comparisons on cross-dataset evaluation and domain generalization

cross-dataset evaluation domain generalization

TransAgent does not overfit on the source
dataset and leads to an overall improvement
over the previous methods.

TransAgent improves the robustness of VLMs
against out-of-distribution data.



Conclusion
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• We propose a unified framework to transfer vision-language foundation models through

heterogeneous agent collaboration.

 Achieving knowledge versatility by leveraging diversified knowledge from external experts

 Achieving transfer flexibility by adaptively integrating the external knowledge via MoA

gating mechanism

 Achieving deployment efficiency by multi-source distillation along with prompt learning

• TransAgent achieves state-of-the-art performance on 11 datasets under the low-shot scenarios.
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