
Revisiting the Integration of Convolution 
and Attention for Vision Backbone

Lei Zhu1, Xinjiang Wang2, Wayne Zhang2 and Rynson Lau1

1City University of Hong Kong, 2SenseTime Research



Motivation

• Integrating  Convs & MHSAs in vision backbones has shown
better accuracy than using a single one of them (e.g. ACMix,
CVPR 2022)

• However, do we need both Convs and MHSAs at the
finest pixel/token level ?

• GLMix: apply Convs and MHSAs at different granularity
levels
o (light-weight ) Convs for finegrained feature grids
o (heavy) MHSAs on a set of coarse-grained

semantic slots



Methodology

• Parallel design with a Global branch 
using attention and a Local branch using 
Convs

• The heavy attention operator only process 
a coarse set of semantic slots (e.g. 64 
slots)

• The finegrained feature grid
is processed by lightweight convolutions

• A pair of soft clustering (grid -> set) 
and dispatching (set -> grid) modules are 
introduced to bridge the set and grid 
representations



Methodology
• We start by creating a Swin-Tiny-Layout architecture GLNet-STL

o (a) Replacing the window attention in Swin-Tiny with GLMix.
the GLNet-STL is both efficient and effective

• To compare with recent SOTA models
o (b) We then adopt the several advanced architectural designs from 

existing works to derive GLNet-4G; and
o (c) scale up the model by the width (channels) to derive GLNet-

GLNet-9G and GLNet-16G

• The GLNet family push the Pareto frontier of accuracy-throughput 
further to the upper-right corner

• Detailed comparisons with more models and on more tasks (e.g., 
object detection, instance segmentation, and semantic segmentation) 
can be found in the paper.
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Ablation Study
• Local-global collaboration

o Local + global > only local  or only global
o Parallel > sequential 
o Using convs in local branch is better than window 

attention

• Clustering strategy
o Soft clustering ,instead of  the hard one with k-means, 

is crucial for both stable training and efficiency 
(throughput)

o Initialization with per-image adaptive pooling is better 
than using shared static parameters

• The receptive field of the local branch does not matter

• It is sufficient to use 64 semantic slots in the global branch



Visualization

• The 64 semantic slots are visualized by pseudo-colorizing the assignment weights in clustering
• The 4 representative slots are selected automatically by the k-medoids algorithm
• Meaningful semantic grouping effect emerges in the soft clustering module with only image-level supervision
• You can  find more visualizations  for layers at different depths and over the training epochs in our paper
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Visualization

• lower block (2nd block) tends to group 
pixels according to color cues. 

• At the middle block (5th block), an object-
level grouping effect has emerged.

•  The upper block  (10th block) pays 
attention to discriminative local regions.



Visualization

During the training, we found that : 

• At the end of the  1st  epoch, we 
can already distinguish the 
foreground objects and the 
backgrounds, although the 
grouping has not very 
concentrated patterns

• At the end of the 5th epoch, the 
semantic grouping becomes 
more concentrated and similar to 
that of the final stage.



Conclusion

• We propose a novel integration scheme of Convs and MHSAs by applying the two operators 
at different granularity levels

• Through extensive experiments, it is discovered that by offloading the burden of fine-
grained features into lightweight Convs, MHSAs can be aggressively applied to a few (e.g. 
64) semantic slots

• It‘s observed that meaningful semantic grouping effects emerge in the soft clustering 
module, which is introduced to bridge the feature grid and semantic slots
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