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Background

Since the initial release in 2015, YOLO (You Only Look
Once) series of models has achieved significant
advancements in the field of real-time object detection. It
enjoys high performance and fast inference speed.

The typical architecture of YOLO includes Backbone,
FPN, and Head, for extracting multi-scale features, fusing
these features, and outputting predictions, respectively.
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Motivation

= YOLO relies on Non-Maximum Suppression (NMS) for
post-processing, which hinders end-to-end deployment.

= Adopt consistent dual assignments to eliminate the NMS.

= Enjoy rich supervision and end-to-end inference simultaneously.

= YOLO variants exhibit computational redundancy and
limited modeling capacity, indicating the room for
Improvement in both efficiency and accuracy.

= Employ efficiency-driven model design simplifies components.

m Utilize accuracy-driven model design enhances the performance.

= [mprovements based on YOLOVS lead to the YOLOV10.




Motivation

= YOLOV10 achieves state-of-the-art balance between performance and efficiency across various scales.
= YOLOvV10-Sis 1.8x faster than RT-DETR-R18, with 2.8 fewer parameters and FLOPSs.

= Compared to YOLOV9-C, YOLOvV10-B reduces latency by 46% and parameters by 25% while
maintaining comparable performance.
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Methodology

= Consistent Dual Assignments for NMS-free Training

= One-to-one matching eliminates the need for NMS but with limited supervisory information. In contrast, one-
to-many strategy provides rich supervision signal. Therefore, dual label assignments are introduced for YOLO,
as shown in the Figure (a), to fully leverage the advantages of both strategies.

= Consistent matching metric is further employed to minimize the supervision gap between two heads, as shown
in the Figure (b). Assuming the matching metric takes the form m = p®loU#, then a,,, = 7 - @y, and
Bo2o =T+ Bo2m, Which encourage the same optimal positive sample for two branches
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Methodology

= Efficiency driven model design

= Lightweight classification head: Employ the lightweight design of

PW(DW) to reduce the redundancy in the classification task.

= Spatial-channel decoupled downsampling: Decouple the spatial reduction
by DW and the channel expansion by PW for efficiency. (a) & (b)
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= Rank-guided block design: Adopt the

compact inverted block for higher
efficiency adaptively based on the
intrinsic ranks which indicates the
redundancy. (c) & (d)




Methodology

= Accuracy driven model design

= | arge kernel convolution: Employ large kernel DW to effectively
compensates for the insufficient receptive field of small models. (e) & (f)

= Partial self-attention: Introduce global representation learning by operating
on partial channels to reduce the redundancy in attention heads. (g)
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Experiments

Model #Param.(M) FLOPs(G)  AP““Y(%)  Latency(ms) Latency’(ms)
YOLOvV6-3.0-N [27] 47 11.4 37.0 2.69 1.76
Gold-YOLO-N [534] 5.6 12.1 39.6 2.92 1.82
YOLOVS-N [20] 32 8.7 37.3 6.16 1.77
YOLOV10-N (Ours) 23 6.7 38.5/39.57 1.84 1.79
YOLOV6-3.0-S 18.5 453 44.3 3.42 2.35
Gold-YOLO-S 21.5 46.0 454 3.82 2.73
YOLO-MS-XS [7] 45 17.4 434 8.23 2.80
YOLO-MS-S [7] 8.1 31.2 46.2 10.12 4.83
YOLOVS-S [20] 11.2 28.6 44.9 7.07 233
YOLOV9-S 7.1 26.4 46.7 - -
RT-DETR-R18 20.0 60.0 46.5 4.58 449
YOLOV10-S (Ours) 7.2 21.6 46.3/ 46.81 2.49 2.39
YOLOV6-3.0-M [27] 34.9 85.8 49.1 5.63 4.56
Gold-YOLO-M [54] 413 87.5 49.8 6.38 5.45
YOLO-MS [7]] 222 80.2 51.0 12.41 7.30
YOLOVS-M [20] 25.9 78.9 50.6 9.50 5.09
YOLOV9-M 20.0 76.3 51.1 - -
RT-DETR-R34 31.0 92.0 489 6.32 6.21
RT-DETR-R50m [[71] 36.0 100.0 51.3 6.90 6.84
YOLOvV10-M (Ours) 154 59.1 51.1/51.31 4.74 4.63
YOLOv6-3.0-L 59.6 150.7 51.8 9.02 7.90
Gold-YOLO-L [54] 75.1 151.7 51.8 10.65 9.78
YOLOVY-C 253 102.1 52.5 10.57 6.13
YOLOvV10-B (Ours) 19.1 92.0 52.5/52.71 5.74 5.67
YOLOvS-L [20] 43.7 165.2 52.9 12.39 8.06
RT-DETR-R50 420 136.0 53.1 9.20 9.07
YOLOvV10-L (OQurs) 24.4 120.3 53.2 /5341 7.28 7.21
YOLOvVS-X [20] 68.2 257.8 53.9 16.86 12.83
RT-DETR-R101 76.0 259.0 543 13.71 13.58
YOLOv10-X (Ours) 29.5 160.4 54.4/54.41 10.70 10.60

Compared with other YOLO variants, YOLOv10
demonstrates significant advantages in terms of
accuracy, parameter count, computational
complexity, and latency.

Compared to the RT-DETR end-to-end model,
YOLOv10 demonstrates superior performance in
terms of latency. YOLOvV10-S and YOLOv10-X
are 1.8x and 1.3x faster than RT-DETR-R18 and
RT-DETR-R101, respectively, with significantly
fewer parameters and FLOPs.




Visualization

YOLOV10 performs well in complex and challenging scenarios.
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