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Outline

TL;DR

We establish the first uniform stability lower bounds for gradient-
based bilevel HO algorithms, and specifically for the UD-based
algorithm, our result verifies the tightness of its existing upper bound.
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Hyperparameter optimization (HO)

Hyperparameter

e.g., regularization coefficient, network topology, feature extractor...
specified as input in the training phase, optimized in the validation
phase, and expected to perform well in the testing phase

Gradient-based HO

classical HO (e.g., grid search) can not apply to a large-scale problem
optimize 104 ∼ 106-dimensional hyperparameters
applications: feature learning [1], differentiable neural architecture
search [2], data reweighting and distillation [3]
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Gradient-based bilevel HO algorithms

Let λ denote the hyperparameter, and θ denote the model parameter.

Given validation loss ℓval(λ,θ) and inner output θ̂(λ), denote that

compound validation loss: L(λ) := ℓval(λ, θ̂(λ)), and

hypergradient: ∇λL(λ) = ∇λℓ
valλ, θ̂(λ)) +∇λθ̂(λ)∇θℓ

valλ, θ̂(λ))

Algorithm (Gradient-based bilevel HO, informal)

Outer level: Given optimized θ̂(λ), update λ by 1-step SGD on
Sval with hypergradient

Inner level: Given current λ, update θ by K-step SGD on Str

Repeat for T steps
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UD and IFT-based HO algorithms

UD: exactly calculate ∇λL(λ) by unrolling the inner differentiation

IFT: approximate ∇λL(λ) by the implicit function theorem
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Figure 1.1: Overview of gradient-based HO [3]
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Can we estimate the expected testing risk based on the empirical
validation risk for the output of an HO algorithm?

Notations

Data space Z on a target distribution D
Two i.i.d. samples Sval of size m and Str of size n

Output hyperparameter A(Sval, Str) of an HO algorithm A
Expected risk of λ: R(λ) = Ez∼D[L(λ; z)]
Empirical risk of λ on Sval: RSval(λ) := 1

m

∑m
i=1 L(λ; zval

i )

Generalization error:

ϵgen := EA,Sval,Str

[
R(A(Sval, Str))−RSval(A(Sval, Str))

]
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Stability and generalization in HO

Uniform stability: the change in the model output when a single

validation example is replaced

Twin validation sets differing at a single example Sval ≃ S̃val

ϵstab :=

supSval≃S̃val,Str EA[L(A(Sval, Str); z̃val
i )− L(A(S̃val, Str); z̃val

i )]

ϵarg := supSval≃S̃val,Str EA[∥A(Sval, Str)−A(S̃val, Str)∥]

Theorem 1.1 (Generalization bound via uniform stability, [4])

For HO algorithms, uniform stability guarantees generalization, i.e.,
ϵgen ≤ ϵstab, and if the compound validation loss L is L-Lipschitz
continuous, we have ϵgen ≤ Lϵarg.
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Existing stability upper bound

Theorem 1.2 (Stability upper bound for UD-based algorithm, [4])

Suppose in an HO problem, ℓval is second order continuously
differentiable, ℓtr is third order continuously differentiable, and ℓtr is
γtr-smooth w.r.t. θ. Then, solving it with UD-based HO algorithm leads
to a L-Lipschitz continuous and γ-smooth compound validation loss L
where L ≲ (1 + ηγtr)K , γ ≲ (1 + ηγtr)2K and uniform argument stability
that

ϵarg ≤
T∑
t=1

T+1∏
s=t+1

(
1 + αs(1− 1/m)γ

)2αtL

m
.

Tightness of this stability upper bound?
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Stability lower bounds for UD-based algorithm

Theorem 2.1 (Stability lower bound for UD-based algorithm)

There exists an HO problem where ℓval is second order continuously
differentiable, ℓtr is third order continuously differentiable, and ℓtr is
γtr-smooth w.r.t. θ, such that solving it with UD-based HO algorithm
has uniform argument stability that

ϵarg ≥
T∑
t=1

T+1∏
s=t+1

(
1 + αs(1− 1/m)γ′

)2αtL
′

m
,

where L′ ≍ L ≍ (1 + ηγtr)K , γ′ = γ ≍ (1 + ηγtr)2K . Here L and γ
denote the Lipschitz continuous and smooth coefficients of L.
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Stability lower bounds for UD-based algorithm

1 For constant step sizes (i.e., αt = c),

ϵarg ≍ (1+c(1−1/m)γ)
T

m .

2 For linearly decreasing step sizes (i.e., αt ≤ c/t), with additional

scaling steps,

T
ln(1+(1− 1

m )cγ)
m ≲ ϵarg ≲ T (1− 1

m )cγ

m .

3 Above results hold for ϵstab with a few additional assumptions

4 Above lower bounds hold for the IFT-based algorithm based on its

fundamental relation to the UD-based algorithm
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An example that induces the lower bounds

Example (Constructed HO example)

The validation loss and training loss are given by:

ℓval(λ,θ; z) = ℓtr(λ,θ; z) =
1

2
θ⊤Aθ + λ⊤θ − yx⊤θ,

where A ∈ Rd×d is symmetric. The eigenvalues of A are
γ1 ≤ · · · ≤ γd where γ1 < 0 and |γ1| ≥ |γd|. Let v1 be a unit
eigenvector for γ1.

Let Sval and S̃val be a pair of twin validation sets differing at the
i-th example where

zi = (xi, yi) = (v1, 1), z̃i = (x̃i, ỹi) = (−v1, 1).
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Construction of the lower bound I

1 Aligned formulation with the upper bound

Observation: The upper-bounded recursion

EA[∥λt − λ̃t∥] ≤
[
1 + (1− 1/m)αtγ

]
EA[∥λt−1 − λ̃t−1∥] + 2αtL

m

Inspiration on the construction: We need to determine conditions
for the hyperparameter divergence exhibiting lower-bounded recursion
with an aligned formulation (▶ lower-bounded expansion properties in
Section 4).
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Construction of the lower bound II

2 Inducing instability for the UD-based algorithm

Observation: Concavity leads to instability for single-level SGD
Inspiration on the construction: The compound validation loss L
needs to exhibit concavity in at least one dimension (▶ an
“indefinite” second order term).

Figure 2.1: Stability of SGD on functions with different convexity
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Construction of the lower bound III

3 Simple bilevel structure for calculating the hyperparameter
divergence

Observation: Bilevel optimization process results in complicated
hyperparameter updates (e.g., in the classical ridge regression).
Inspiration on the construction: The interaction of λ and θ needs
to be simple (▶ a bilinear cross term).

Figure 2.2: An example of HO in ridge regrassion
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Construction of the lower bound

Stability 
lower bound

Lower-bounded 
expansion properties

(Section 4)

Constructed 
example

Simple 
cross term 

Other 
trials…Concavity

Leads to
(Theorems 5.1, 5.2)

Satisfies

Figure 2.3: Overview of the construction
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Thank you for your attention!

Email: wangrz@ruc.edu.cn
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