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> Background

« Node Classification

An attributed graph G = (V,E), the adjacency matrix A € R™",

the feature matrix X € R"*4 and the label matrix Y € R™*¢,

Given a labeled node set V;, predict the labels of other nodes in V- V.
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> Background

« Transformer
Transformer layer:

Multi-head self-attention (MSA) + Feed-forward network (FFN)
MSA: |

MSA(H) — Concat(headl (H), oe headh (H))WO, > AddF& l\(ljorm
ee
head;(H) = Attention(HWiQ, HW/, HW/), FOﬂ:ard
K" |
Attention(Q, K, V) = Softmax (Q ) V. A s Tom
\/ dk Multi-Head
Attention
FFN: 4

FFN(H) = Linear (G(Linear(H))). |

Vaswani A, et al. Attention is all you need. NIPS 2017.



> Background

- Graph Transformers for node classification
Leveraging the Transformer layer to learn the node representations.
Two main categories of existing GTs:

» Entire graph-based GTs:

Requiring the entire graph as the model input. Performing attention calculation on all node pairs.

Involving many irrelevant nodes and introducing high training cost.

= Tokenized GTs:

Transforming the input graph into token sequences for feeding Transformer to learn node
representations.

Focusing on necessary graph information carried by tokens and requiring low training cost.

Jinsong Chen, Siyu Jiang, Kun He. NTFormer: A Composite Node Tokenized Graph Transformer for Node Classification. arXiv, 2024.



> Background

- Tokenized Graph Transformers

4 Token Generator\
Graph : ) Transformer- Downstream
[ data } » | Neighborhood-aware [ based backbone } [ tasks
Node-aware
N P

Neighborhood and node are two important elements in existing token generator.

Compared to neighborhood-aware tokens, node-aware tokens are more flexible

to preserve various graph information.

Fu, et al. VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections. ICLR 2024.



> Background

 Node-aware token generator

» Step 1: Measuring the similarity of nodes.

Develop a function, such as cosine similarity and random walk-based strategies
to calculate the similarity of each node pair.

» Step 2: Node sampling

Apply top-k sampling strategy to sampling nodes with high similarity as tokens

to construct the token sequence.

Zhang, et al. Hierarchical Graph Transformer with Adaptive Node Sampling. NeurlPS 2022.



> Motivation

« Rethinking Node Tokenized Graph Transformer

/ Previous methods \

Abandoned

tokens
Measure

i | sy S S OO [rowtermersoneond Most nodes are abandoned.
N'?g E;_li':’ ® L_raoz—i&ei.:e Mode In
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In graph to learn node

Figure 1: A toy example to illustrate the difference of the token generator between the token generator [ € p rese ntat IoN S?
in our method and that used in the previous node tokenized graph Transformers. Previous methods

only sample nodes with high similarity to construct token sequences. In contrast, our method

introduces both positive and negative token sampling to preserve information carried by diverse nodes

in the graph.

Chen, et al. Leveraging Contrastive Learning for Enhanced Node Representations in Tokenized Graph Transformers. NeurlPS 2024.



> GCFormer

« Key idea

Considering both high- and low-similarity nodes for model training.

Main steps

» Hybrid Token Generator:

Generate both positive and negative token sequences.

» Learning and Aggregation:
Learn representations from different types of token sequences by Transformer.
s Auxiliary Loss Function:

Introduce contrastive learning-based loss function for constraining model training.



> GCFormer

« Hybrid Token Generator

» Calculating node similarity matrix S € R™*"

Xin,XinT

S = X X" e R™4 represents the arbitrary node features

X=X for attribute feature view, X"*= A*X for topology feature view

» Sampling positive token set

Vip = {v;|v; € Top(S;)}

= Sampling negative token set

Vit = {vj|vj € Sample(Vir)}, Vi=V- Vip



> GCFormer

« Token sequence construction

Target Nodes from
node positive token set

|
I J \
{A 000 - } Positive token sequence Ple R(+Pi)xdo Input sequences
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> GCFormer

« Transformer-based backbone

D,

= Learning from Pos. P! = Msa (Pi*) + P, P = FFN (P17 4 P
= Learning from Neg. N’ = MsA (N"(H)) + NV Ni® Z FEN (Ni(l)/) L Ni©s

= Signed Aggregation H! = P} — N},

ST T~

Final node  Learning from  Learning from
representation positive tokens negative tokens

Signed aggregation makes a
distinguishable node representation



> GCFormer

« Predicting labels of nodes

» Learning from different feature views

7! = a-H* + (1 —a)-Ht'i,

H%' and H"' are representations of node v; learning from attribute and topology feature views.

a € [0,1] is a hyper-parameter to determine the contributions of different feature views.

s Loss function



> GCFormer

« Contrastive Learning-based Loss Function

exp (P§ - PV /1) 1R
i exp (P NJ /1) A

Lcl(vi) = _log

« Overall Loss

L=Le+ [ Ly



) Experiments

« Datasets

Table 2: Statistics on datasets, ranked by the homophily level from high to low.

Dataset #nodes #edges #features #labels H |
Photo 7,650 238,163 745 8 0.83
ACM 3,025 1,3128 1,870 3 0.82
Computer 13,752 491,722 767 10 0.78
Corafull 19,793 126,342 8,710 70 0.57
BlogCatalog 5,196 171,743 8,189 6 040
UAI2010 3,067 28,311 4,973 19 0.36
Flickr 7,975 239,738 12,047 9 0.24

Romanempire 22,662 32,927 300 18  0.05




> GCFormer

Performance comparison

Table 1: Comparison of all models in terms of mean accuracy + stdev (%). The best results appear in
bold. The second results appear in underline.

Dataset Photo ACM Comuter  Corafull  BlogCatalog UAI2010 Flickr Romanempire
H(G) 0.83 0.82 0.78 0.57 0.40 0.36 0.24 0.05
APPNP 03.00+055 93.00+0s55 91.31+020 63.37 1004 94.77 +0.19 76414047 84.66+031 52.96+03s5
SGC 93. 7441007 93.2441040 88.90+011  62.77+0.19 72.61+007 69.87+017 47.48+0.40 34.42 1077
GPRGNN 04.57+04a  93.421020 90.15+03¢  69.08+0.11 94.36+029 76.941061  85.91 41051 67.06+027
FAGCN 94.06+003 93.37+02¢4 83.17+181  56.61+204 79.92+430 T2.17+157  82.03+040 48214315
ACM-GCN 94.56+021  93.04+128 85.194226 65.11+198 94.53 +053 76.87+142  83.85+073 63.35+180
SGFormer 929341002 93.79+03¢ 81.864382 64.62+120 94.33+0.19 57.984395 61.05+068 41.31+051
ANS-GT 94.88+023 93.92+021 89.58+028 67.941021 91.93+031 74.1640711  85.94 1025 73.95+032
Specformer 95.22+013  93.63+194 85474144  69.18+02¢4 942141023 73.06+077  86.55+040 63.69+061
VCR-Graphormer 95.13+024 93.244031  90.144043  68.96+028  93.92+037  75.78+069 86.23+074 74.76+053
GraphGPS 93.79+032  93.31+026 89.21+028 62.08+035  94.35+0s2  75.44+048  83.61+057 68.29+09
NAGphormer 95.47+020 93.32+030 90.79+04s 69341052 94.42+063 76361112 86.85+0s85 7494105
GCFormer 95.65+041 94321047 92.09t021 69.53103s 96.03+0.44 77.57 1086  87.90+0.4s 75.38 068

GCFormer outperforms advanced GTs as well as representative GNNs on all datasets.



GCFormer

Study of token sampling size
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Figure 2: Performance of GCFormer with different sampling sizes on all datasets.



> GCFormer

« Study of aggregation weight
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Figure 3: Performance of GCFormer with different « on all datasets.



> Future work

Rethinking GCFormer

The main limitation of GCFormer is the unified sampling strategy for
different types of graphs.

Experimental results show that the performance of GCFormer is sensitive to
the sampling size on different graphes.

The phenomenon implies that an adaptive sampling strateqgy is required to

improve the performance and stability of GCFormer on diverse graphs.



> End

Thanks for your attention!



