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Challenge 1 - Clinical data are inherently highly asynchronous
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Challenge 2 - Patient-specific CXR generation

Text-to-audio / text-to-image generation VS Individual clinical image generation
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*Generated by Stable Diffusion.
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The Proposed Method: DDL CXR
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LDM stage: dynamic latent CXR generation

Conditioni hani - QK
onditioning mechanisms Attention(Q, K, V) :softmax( Ja )-V,

with Q = Wo - ¢ (27|24, ) , K = Wi - floms (X{ine)), V = W - ik (XER,))

Capturing disease course via EHR time series: Laux := 77 T M S SR 1og (TR 4 (1 — yCXR) log(1 — gEXR)



The Proposed Method: DDL CXR
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LDM stage: dynamic latent CXR generation
Enhancing semantic multimodal fusion via contrastive LDM learning: E,.4,) = (1 — 8)E(q.1,) + 39, where 8 ~ N(0,1)
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Results - Clinical Prediction (overall performance)

Phenotyping Mortality

AUPRC AUROC AUPRC AUROC
Uni-EHR [23] 0.434 +0.009 0.720 £0.006 0.498 +£0.007 0.815 £0.007
MMTM [52] 0.430 +0.005 0.715 £0.003 0.422 £0.014 0.785 £+0.004
DAFT [9] 0.435 +0.002 0.720 £0.003 0.448 +0.004 0.800 £+0.003
MedFuse [10] 0.437 £0.001 0.718 £0.002 0.443 +£0.009 0.793 £+0.003
DrFuse [13] 0.459 +0.003 0.729 £0.004 0.460 £0.004 0.773 £+0.008
GAN-based [53] 0.453 +£0.010 0.728 +0.008 0.505 £0.018 0.816 +0.010
DDL-CXR (ours) 0.470 +0.003 0.740 +£0.002 0.523 +0.011 0.822 +0.009

DDL-CXR obtains the best overall performance

Generating an updated CXR is beneficial for prediction.

* Performance gain in terms of AUPRC: identifying the positive class
in imbalanced medical datasets.

* Relative improvements: 2.4% (phenotype classification); 3.56%

(mortality prediction)



Results — Mortality prediction with varying time interval
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« Dynamic generation - different ranges of 6: time interval
(hour) between the prediction time and the time of last CXR.

Overall 0 <12 12<6<24 24<6<36 d > 36

prevalence 14.7% 16.6% 19% 15.9% 9.26%
Uni-EHR [23]  0.815 £0.007 0.854 £0.010 0.799 +0.013  0.756 £0.019] 0.796 +0.008
MMTM ([52] 0.785 £0.004  0.798 £0.008 0.763 +0.004 0.760 £0.012] 0.772 £0.014
DAFT [9] 0.800 £0.003  0.803 £0.010 0.782 +0.009  0.776 £0.006] 0.796 +0.008
MedFuse [10] 0.793 £0.003 0.812 £0.004 0.762 £0.007 0.760 +0.009| 0.800 £0.010
DrFuse [13] 0.773 £0.008 0.802 £0.012 0.717 £0.023  0.757 £0.041] 0.723 +0.013
GAN-based [53] 0.816 +0.010 0.846 £0.010 0.800 +£0.011  0.760 £0.026] 0.806 £0.016
DDL-CXR (ours)  0.822 +£0.009 0.867 £0.015 0.800 £0.008 0.753 £0.015| 0.830 £0.011

DDL-CXR receives a noticeable performance increase (in AUROC) when § > 36h.




More details can be found at
Project Page ArXiv
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