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Challenge 1 - Clinical data are inherently highly asynchronous
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Text-to-audio / text-to-image generation
Explicit controllable attributes*: VS Individual clinical image generation

Explicit description of:  

Challenge 2 - Patient-specific CXR generation
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*Generated by Stable Diffusion.
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Contributions
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Contrastive

training of LDM

• Tackle the asynchronicity 
between EHR and CXR

• Capture interaction in a highly 
heterogeneous setting

• Capture the disease 
course in EHR modality

• Enhance cross-modal 
interaction

• Outperform SOTA on:
mortality prediction, 
phenotype classification

• Excel in individual CXR 
generation
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The Proposed Method: DDL-CXR
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Conditioning mechanisms

Capturing disease course via EHR time series:



The Proposed Method: DDL-CXR
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LDM stage: dynamic latent CXR generation
Enhancing semantic multimodal fusion via contrastive LDM learning:

LDM training loss: 



Results – Clinical Prediction (overall performance)
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DDL-CXR obtains the best overall performance
• Generating an updated CXR is beneficial for prediction.
• Performance gain in terms of AUPRC: identifying the positive class 

in imbalanced medical datasets. 
• Relative improvements: 2.4% (phenotype classification); 3.56% 

(mortality prediction)



increases
Last-CXR: more “outdated”

Results – Mortality prediction with varying time interval
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• DDL-CXR receives a noticeable performance increase (in AUROC) when 𝜹 ≥ 𝟑𝟔h. 
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time

Time of 
last CXR

t𝛿

• Dynamic generation - different ranges of 𝜹: time interval 
(hour) between the prediction time and the time of last CXR.

𝛿



Thank you!
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Project Page ArXiv
More details can be found at

Poster session: Dec 12, 4:30pm – 7:30pm


