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Introduction

> Consider federated learning (FL) on manifolds
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+ Each client has local loss f; that is smooth but nonconvex

- Local datasets D, across clients i are heterogeneous

« M is a compact smooth submanifold embedded in R?**, with Euclidean metric serving as its
Riemannian metric. E.g., Stiefel manifold: St(d, k) = {z € R¥** : 2Tz = I, }
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Challenges and Contributions

Challenges
» Single-machine optimization on M cannot be directly adapted to FL
 Even if each local model lies on M, their average typically does not
» Extending FL algorithms to manifold optimization is not straightforward
« M is nonconvex
» FL algorithms with local updates need substantial modifications to accommodate M
+ Client drift issue due to local updates and heterogeneous data persists
Contributions
> Propose a computation- and communication-efficient algorithm for solving (1)
» Establish sub-linear convergence to a neighborhood of a first-order optimal solution

» Demonstrate superior performance over alternative methods



Algorithm Intuition and Innovations

» The equivalent and compact form of our algorithm is
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» Mimic centralized projected Riemannian gradient descent
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« When 7 =1 and b = m;, we recover "' := P, (?M(T) -7 gradf(SDM(T))>

> Feasibility of all iterates at a low computational cost by using 7,

- Avoid exponential mapping, inverse exponential mapping, and parallel transport

» Overcome client drift

« Correction employs “variance reduction” and does not incur extra communication



Algorithm Implementation

1: Input: R, 7, 7, 1, = M, T, Z', and ¢} = 0 for all i € [n]
2: forr=1,2,...,R do

3: Client i

4 Set z[, =P (T") and 2]y = P (T")

5 fort=0,1,....,7—1 do

6: Sample a mini-batch dataset B}, C D, with |B] | =b
T Update gradf (i L) = 5, L, eradfy(:1iDy)
8: Update 27,y = 27, — 0 (gradf, (2] ; B,) + ¢f)

o: Update z{,,; = P (21141)
10:  end for
11:  Send Z7  to the server
12:  Server
13:  Update 7! = 2,,(T") + 1, (£ 30 21, — Pye(@))
14:  Broadcast z"'! to all the clients
15: Client ¢

r+ — — T—1 r

16: Update ¢/t = nglm (Por(@) —7" ) — izt:o gradf; (2] ;; Bi,)
17: end for

18: Output: P, (zF™)




Convergence Analysis

Definitions

» (Riemannian gradient): The Riemannian gradient gradf(z) of a function f at the point
x € M is the unique tangent vector that satisfies

(gradf(z),) = df(x)[¢], VEeT,M

« For a submanifold M, gradf(z) can be computed as gradf(z) = P 5 (Vf(z))
> (-proximal smoothness of M'): The A-tube around M is U, (7) := {z : dist(z, M) < 7}.
We say that M is A-proximally smooth if the projection operator P ,,(x) is a singleton
whenever z € U, (%)

- Any compact smooth submanifold M embedded in R?** is a proximally smooth set
+ Ensure not only the uniqueness of the projection but also the Lipschitz continuity of 7,

172c(x) = Pac)l < 20z —yl, Y,y € Up(3/2)



Convergence Analysis

Assumptions
» The proximal smoothness constant of M is 2~
» L-smoothness: |gradf;;(z; D;,) — gradf;(y; D)) < Lz —y|
» Unbiasedness and bounded variance: E[||gradf;(z] ,; B} ,) — gradf;(z] )|* | F}] < 0?/b

(Theorem) Under some assumptions and conditions on ) := 571, we have
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where G5 (P e (27)) = (Ppr(a”) — /i



L_2) Numerical Experiments

» kPCA problem with Mnist dataset
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Figure: Comparison with alternative methods (1st row) and impacts of batch size (2nd row)
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