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Introduction
▶ Consider federated learning (FL) on manifolds

minimize
𝑥∈ℳ

𝑓(𝑥) ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑓𝑖(𝑥), 𝑓𝑖(𝑥) = 1
𝑚𝑖

𝑚𝑖

∑
𝑙=1

𝑓𝑖𝑙(𝑥; 𝒟𝑖𝑙) (1)

• Each client has local loss 𝑓𝑖 that is smooth but nonconvex
• Local datasets 𝒟𝑖 across clients 𝑖 are heterogeneous
• ℳ is a compact smooth submanifold embedded in ℝ𝑑×𝑘, with Euclidean metric serving as its

Riemannian metric. E.g., Stiefel manifold: St(𝑑, 𝑘) = {𝑥 ∈ ℝ𝑑×𝑘 ∶ 𝑥𝑇𝑥 = 𝐼𝑘}

Figure: Federated learning Figure: Optimization on manifolds
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Challenges and Contributions

Challenges
▶ Single-machine optimization on ℳ cannot be directly adapted to FL

• Even if each local model lies on ℳ, their average typically does not
▶ Extending FL algorithms to manifold optimization is not straightforward

• ℳ is nonconvex
▶ FL algorithms with local updates need substantial modifications to accommodate ℳ

• Client drift issue due to local updates and heterogeneous data persists
Contributions

▶ Propose a computation- and communication-efficient algorithm for solving (1)
▶ Establish sub-linear convergence to a neighborhood of a first-order optimal solution
▶ Demonstrate superior performance over alternative methods
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Algorithm Intuition and Innovations
▶ The equivalent and compact form of our algorithm is

⎧
{{{{
⎨
{{{{
⎩

ẑ𝑟
𝑡+1 = ẑ𝑟

𝑡 − 𝜂( gradf (z𝑟
𝑡 ; ℬ𝑟

𝑡 )⏟⏟⏟⏟⏟
new

+ 1
𝜏

𝜏−1

∑
𝑡=0

gradf (z𝑟−1
𝑡 ; ℬ𝑟−1

𝑡 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

average

− 1
𝜏

𝜏−1

∑
𝑡=0

gradf (z𝑟−1
𝑡 ; ℬ𝑟−1

𝑡 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

old

)

z𝑟
𝑡+1 = 𝒫ℳ ( ̂z𝑟

𝑡+1)

x𝑟+1 = 𝒫ℳ(x𝑟) − 𝜂𝑔𝜂
𝜏−1

∑
𝑡=0

gradf (z𝑟
𝑡 ; ℬ𝑟

𝑡 )

▶ Mimic centralized projected Riemannian gradient descent
• When 𝜏 = 1 and 𝑏 = 𝑚𝑖, we recover ̃𝑥𝑟+1 ∶= 𝒫ℳ(𝒫ℳ(𝑥𝑟) − ̃𝜂 ⋅ grad𝑓(𝒫ℳ(𝑥𝑟)))

▶ Feasibility of all iterates at a low computational cost by using 𝒫ℳ
• Avoid exponential mapping, inverse exponential mapping, and parallel transport

▶ Overcome client drift
• Correction employs “variance reduction” and does not incur extra communication
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Algorithm Implementation
1: Input: 𝑅, 𝜏, 𝜂, 𝜂𝑔, ̃𝜂 = 𝜂𝜂𝑔𝜏, 𝑥1, and 𝑐1

𝑖 = 0 for all 𝑖 ∈ [𝑛]
2: for 𝑟 = 1, 2, … , 𝑅 do
3: Client 𝑖
4: Set ̂𝑧𝑟

𝑖,0 = 𝒫ℳ(𝑥𝑟) and 𝑧𝑟
𝑖,0 = 𝒫ℳ(𝑥𝑟)

5: for 𝑡 = 0, 1, … , 𝜏 − 1 do
6: Sample a mini-batch dataset ℬ𝑟

𝑖,𝑡 ⊆ D𝑖 with |ℬ𝑟
𝑖,𝑡| = 𝑏

7: Update grad𝑓𝑖(𝑧𝑟
𝑖,𝑡; ℬ𝑟

𝑖,𝑡) = 1
𝑏 ∑

D𝑖𝑙∈ℬ𝑟
𝑖,𝑡

grad𝑓𝑖𝑙(𝑧𝑟
𝑖,𝑡;D𝑖𝑙)

8: Update ̂𝑧𝑟
𝑖,𝑡+1 = ̂𝑧𝑟

𝑖,𝑡 − 𝜂 (grad𝑓𝑖(𝑧𝑟
𝑖,𝑡; ℬ𝑟

𝑖,𝑡) + 𝑐𝑟
𝑖 )

9: Update 𝑧𝑟
𝑖,𝑡+1 = 𝒫ℳ( ̂𝑧𝑟

𝑖,𝑡+1)
10: end for
11: Send ̂𝑧𝑟

𝑖,𝜏 to the server
12: Server
13: Update 𝑥𝑟+1 = 𝒫ℳ(𝑥𝑟) + 𝜂𝑔 ( 1

𝑛 ∑𝑛
𝑖=1 ̂𝑧𝑟

𝑖,𝜏 − 𝒫ℳ(𝑥𝑟))
14: Broadcast 𝑥𝑟+1 to all the clients
15: Client 𝑖
16: Update 𝑐𝑟+1

𝑖 = 1
𝜂𝑔𝜂𝜏 (𝒫ℳ(𝑥𝑟) − 𝑥𝑟+1) − 1

𝜏 ∑𝜏−1
𝑡=0 grad𝑓𝑖(𝑧𝑟

𝑖,𝑡; ℬ𝑟
𝑖,𝑡)

17: end for
18: Output: 𝒫ℳ(𝑥𝑅+1)
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Convergence Analysis

Definitions
▶ (Riemannian gradient): The Riemannian gradient grad𝑓(𝑥) of a function 𝑓 at the point

𝑥 ∈ ℳ is the unique tangent vector that satisfies

⟨grad𝑓(𝑥), 𝜉⟩𝑥 = 𝑑𝑓(𝑥)[𝜉], ∀𝜉 ∈ 𝑇𝑥ℳ

• For a submanifold ℳ, grad𝑓(𝑥) can be computed as grad𝑓(𝑥) = 𝒫𝑇𝑥ℳ(∇𝑓(𝑥))
▶ ( ̂𝛾-proximal smoothness of ℳ): The ̂𝛾-tube around ℳ is 𝑈ℳ( ̂𝛾) ∶= {𝑥 ∶ dist(𝑥, ℳ) < ̂𝛾}.

We say that ℳ is ̂𝛾-proximally smooth if the projection operator 𝒫ℳ(𝑥) is a singleton
whenever 𝑥 ∈ 𝑈ℳ( ̂𝛾)

• Any compact smooth submanifold ℳ embedded in ℝ𝑑×𝑘 is a proximally smooth set
• Ensure not only the uniqueness of the projection but also the Lipschitz continuity of 𝒫ℳ

‖𝒫ℳ(𝑥) − 𝒫ℳ(𝑦)‖ ≤ 2‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝑈ℳ( ̂𝛾/2)
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Convergence Analysis

Assumptions
▶ The proximal smoothness constant of ℳ is 2𝛾
▶ 𝐿-smoothness: ‖grad𝑓𝑖𝑙(𝑥; 𝒟𝑖𝑙) − grad𝑓𝑖𝑙(𝑦; 𝒟𝑖𝑙)‖ ≤ 𝐿‖𝑥 − 𝑦‖
▶ Unbiasedness and bounded variance: 𝔼[‖grad𝑓𝑖(𝑧𝑟

𝑖,𝑡; ℬ𝑟
𝑖,𝑡) − grad𝑓𝑖(𝑧𝑟

𝑖,𝑡)‖2 ∣ ℱ𝑟
𝑡 ] ≤ 𝜎2/𝑏

(Theorem) Under some assumptions and conditions on ̃𝜂 ∶= 𝜂𝜏𝜂𝑔, we have

1
𝑅

𝑅
∑
𝑟=1

𝔼‖𝒢𝜂̃(𝒫ℳ(𝑥𝑟))‖2 ≤ 𝒪 ( 1√
𝑛𝜏𝑅𝜂

+ 𝜎2

𝑛𝜏𝑏
)

where 𝒢𝜂̃(𝒫ℳ(𝑥𝑟)) ∶= (𝒫ℳ(𝑥𝑟) − ̃𝑥𝑟+1)/ ̃𝜂
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Numerical Experiments
▶ kPCA problem with Mnist dataset
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Figure: Comparison with alternative methods (1st row) and impacts of batch size (2nd row)
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