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BACKGROUND
• Linear Mixed-Effects Models (LMMs)

• Bayesian Inference of LMMs



Linear Mixed-Effects Models

Linear mixed-effects models (LMMs) break regression coefficients into fixed and random effects:

𝑦𝑛 = 𝑥𝑛
𝑇 𝛽 + 𝑢𝑔𝑛

+ 𝜖, 𝜖 ∼ normal(0, 𝜎)

Fixed effects are global, sharing among different data points.

Random effects are group specific, for M groups, there are 𝑀 random effects 𝑢1, … , 𝑢𝑀.
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General Linear Mixed-Effects Models

In practice, a data point may belong to multiple orthogonal groups (gender, ethnicity, region, etc., which we 

call classes), and an effect may only multiply with some of the regressors. A more general LMM is

𝑦𝑛 = 𝑥𝑛
𝑇𝛽 + 𝑧1,𝑛

𝑇 𝑢1,𝑔1,𝑛
+ 𝑧2,𝑛

𝑇 𝑢2,𝑔2,𝑛
+ ⋯ + 𝑧𝐿,𝑛

𝑇 𝑢𝐿,𝑔𝐿,𝑛
+ 𝜖, 𝜖 ∼ normal(0, 𝜎)

For data 𝑛, it belongs to 𝑔1,𝑛  … , 𝑔𝐿,𝑛, whose corresponding random effects multiply with 𝑧1,𝑛, … , 𝑧𝐿,𝑛.

The inference of LMMs requires estimation of hyperparameters, 𝛽, 𝑢, 𝜎, which may further contain 

hierarchical structures.



Bayesian Inference of LMMs

For the parameters 𝛽, 𝑢, 𝜎, practitioners would 

• Assign priors on them

• Form a probabilistic model

• Run a Bayesian inference algorithm

• Analyze with the obtained parameters

There are structures in the model. How can we make naïve inference faster?

Write a probabilistic program

Run model.inference() inside a PPL



METHODS
• Vectorization

• Marginalization



Marginalization

For the canonical form,

𝒚 = 𝑿𝜷 + 𝒁1𝒖1 + 𝒁2𝒖2 + ⋯ + 𝒁𝐿𝒖𝐿 + 𝝐, 𝝐 ∼ normal(𝟎, 𝚺𝒚)

If we just look at the first class, usually we assign

𝒖1 ∼ normal(𝝁1, 𝚺𝒖1
)

Then we can rewrite the canonical form as

𝒚 = 𝒁1𝒖1 + 𝒃 + 𝝐, 𝝐 ∼ normal(𝟎, 𝚺𝒚)

It is possible to exactly integrate 𝒖1 out from the model:

𝑝 𝒚 𝒖1, … 𝑝 𝒖1| … → 𝑝(𝒚| … )𝑝 𝒖1|𝒚, …



Marginalization

The marginalized likelihood 𝑝 𝒚| …  becomes more complicated:

𝑝 𝒚| … = normal( … , 𝒁1𝜮𝒖1
𝒁1

𝑇 + 𝜮𝒚 )

𝑬 = 𝒁1𝜮𝒖1
𝒁1

𝑇 + 𝜮𝒚 is a dense 𝑁 × 𝑁 matrix. Evaluating log 𝑝 𝒚| …  naively becomes 𝑂(𝑁3), 

• The determinant |𝑬| is 𝑂 𝑁3 .

• The computation 𝒗𝑻𝑬−𝟏𝒗 is 𝑂 𝑁3 . 

• Also, it is 𝑂 𝑁3  to sample from 𝑝 𝒖1|𝒚, … .

We use (a) linear algebra tricks and (b) structure of LMMs to speed up the above evaluations.



Summary of results

We consider the problem of marginalizing one or all random effects. Both marginalization 

approaches in this work have linear complexity with respect to 𝑁.



EXPERIMENTS
• Cross-effects Models

• Experiments in Cognitive Sciences



Cross-effects models – ETH instruction evaluation



More Experiments in Cognitive Sciences



THANK YOU!

Jinlin Lai

jinlinlai@cs.umass.edu
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