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BACKGROUND

- Linear Mixed-Effects Models (LMMs)

- Bayesian Inference of LMMs




Linear Mixed-Effects Models

Linear mixed-effects models (LMMs) break regression coefficients into fixed and random effects:

Yn = x5 (B +uy, ) + € € ~ normal(0, o)

N\

Fixed effects are global, sharing among different data points.

Random effects are group specific, for M groups, there are M random effects uy, ..., uy,.



General Linear Mixed-Effects Models

In practice, a data point may belong to multiple orthogonal groups (gender, ethnicity, region, etc., which we

call classes), and an effect may only multiply with some of the regressors. A more general LMM is

_ T T T T
Yn = Xnf + Zipli g, , T ZonUz,g,, T+ Z UL g, , T € € ~ normal(0, o)

For data n, it belongs to g, ,, ..., g1, Whose corresponding random effects multiply with z; ,, ...,z ;.

The inference of LMMs requires estimation of hyperparameters, £, u, o, which may further contain
hierarchical structures.



Bayesian Inference of LMMs

For the parameters 3, u, o, practitioners would

_—

Assign priors on them

— Write a probabilistic program
Form a probabilistic model

P

Run a Bayesian inference algorithm ~ ——— Run model.inference() inside a PPL

Analyze with the obtained parameters

There are structures in the model. How can we make naive inference faster?



METHODS

- Vectorization

- Marginalization




Marginalization

For the canonical form,

y=XB+Zu +Zu; +--+Z,u +¢€¢€~normal(0,%,)

If we just look at the first class, usually we assign

u; ~ normal(p,, X, )

Then we can rewrite the canonical form as

y=Z;u; +b+ €€ ~normal(0,%,)

It is possible to exactly integrate u; out from the model:

p(yluy, .. ) p(uq|...) > p(y| .. ) p(uyly, ...)



Marginalization

The marginalized likelihood p(y| ...) becomes more complicated:

p(y|..) =normal(...,Z, %, Z1 + X))
E=2,%,7Z] + X, is a dense N x N matrix. Evaluating log p(y| ...) naively becomes O(N?),
The determinant |E| is O(N3).
The computation vTE~1v is O(N?).
Also, it is O(N?3) to sample from p(uy|y, ...).

We use (a) linear algebra tricks and (b) structure of LMMs to speed up the above evaluations.



Summary of results

We consider the problem of marginalizing one or all random effects. Both marginalization
approaches in this work have linear complexity with respect to N.

Table 1: Time complexities of different HMC approaches for the submodel involved in marginaliza-
tion. Initialization is done once before the HMC loop. The log density is computed within each step
of the leapfrog integrator. Recovery is performed for each sample from HMC. NN is the number of
observations, M 1is the dimension for one class of random effects, ) 1s the dimension for all classes

of random effects, L is the number of classes, d is the dimension for an effect of a group in a class.

Submodel Approach Initialization Log density Recovery
HMC - O(Md? + NLd) .
plui, ¥y|®,u_;) Naive marginalization . O(M? + N O(M3 + N3)
Marginalize with lemmas - O(Md® + NLd + Nd%) ©O(Md* + NLd + Nd%)
HMC - O(Dd* + NLd) .
plv.y|&) Naive marginalization a(D?* + N¥) O(D? + N

Marginalize with assumptions ~ O({D? + NL2d?) (D? + NLd) O(D? + NLd)




EXPERIMENTS

- Cross-effects Models

- Experiments in Cognitive Sciences




Cross-effects models - ETH instruction evaluation

Table 2: Running time in seconds for HMC, with or without marginalization. Mean and standard
deviation over 5 independent runs are reported. Experiments are run on NVIDIA A40.

Method  No marginalization Marginalize u;  Marginalize uz  Marginalize us  Marginalize u

Time (s) 13417 (98) 5004 (1468) 2607 (3) 3071 (4) 631(12)
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Figure 2: Average ESS for each variable on the instruction evaluation model with different HMC
strategies. Numbers above the sample size 100,000 indicate effective sampling.



More Experiments in Cognitive Sciences
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Figure 4: Experimental results for the 9 cognitive science datasets with and without marginalization.
Each experiment is performed 5 times with different random seeds. Marginalization usually improves
sampling speed measured by iterations per second (iter/s) and sample efficiency measured by ESS

per iteration (ESS/iter).
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