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Model-based RL for offline visual control

YRR =

Offline dataset World model Agent

e Offline visual RL is a promising approach to learn an efficient control policy from visual observations,
avoiding the need for high interaction costs with the physical world

* The benefits of using a world model for Offline RL are that the agent interacts with the model rather
than directly with the dataset

* However, this approach cannot entirely solve the overestimation issue, as the world model may
overfit the limited dataset, thereby introducing bias
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How to tackle value overestimation?
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* Typical offline RL methods often penalize estimated values beyond the offline data distribution,
leading to value over-conservatism

* This penalization can suppress the agent’s exploration in the world model --- Exploration that may
sometimes be valuable and at other times should indeed be suppressed

* How can we differentiate between the two? Address each case accordingly?
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A New Thought: Online Simulator as a Behavior “Test Bed”
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* CoWorld solves offline visual RL as an offline-online-offline transfer learning problem

 CoWorld leverages a target-informed source critic to provide mild constraints for target value
estimation, without impeding state exploration with potential advantages

NeurlPS’24 Making Offline RL Online: Collaborative World Models for Offline Visual Reinforcement Learning



Experimental Setups

I I
Meta-World | Meta-World — RoboDesk | DMC
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Drawer Close Button Press | Window Close Open Slide | Walker Walk Walker Downbhill
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| Source: Meta-World Target: RoboDesk Similarity / Difference
Task Window Close Open Slide Related manipulation tasks
Dynamics Simulated Sawyer robot arm Simulated Franka Emika Panda robot arm Different
Action space Box(-1, 1, (4,), float64) Box(-1, 1, (5,), float32) Different
Reward scale [0, 1] [0, 10] Different
Observation Right-view images Top-view images Different view points

* Setup 1: Cross-Task experiments on Meta-World
e Setup 2: Cross-Environments experiments from Meta-World to RoboDesk

* Setup 3: Cross-Dynamics experiments on DeepMind Control Suite (DMC)
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Results: Meta-World=>RoboDesk
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* CoWorld outperforms Offline DV2 and DV2 Finetune by large margins

* Directly fine-tuning the source world model in this cross-environment setup, does not result in
significant improvements in the final performance
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Results: Multi-Source CoWorld

Target Domain
(RoboDesk)

[ One-Hot Source ]

Domain Selector
|

* When there are notable distinctions between the source domain and target domain, multi-
source CoWorld can adaptively selects a useful source task
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Results: Meta-World

MODEL | BP— DC* DC — BP BT— WC BP— HP WC— DC HP— BT AVG.
OFFLINE DV 2 2143+579 31424533 39214752 278+128 3899+679 3002+346 2730
LOMPO 2883+183 4461458 29831569 2230223 2756+351 1961287 1712

e Steps: 79 e Unfinished e Steps: 59
* Return: 3002 * Return: 1961 * Return: 3889
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Results: Meta-World
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* Existing approaches often overestimate the value functions in the offline setup

* The values estimated by CoWorld are notably more accurate and more akin to the true values
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Results: Meta-World
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Results: DeepMind Control Suite

MODEL WW —- WD WW —- WU WW - WN CR—-CD CR—CU CR—CN AvG.
OFFLINE DV2 435+22 139+4 214+4 243+7 3=£1 51+4 181
LOMPO 462 1+ 87 260£21 460+9 39552 46+19 120+4____ 291

N
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Method

Rich interactions

Step 1: Offline-to-Online State Alignment Value
|:> j E é constraint
Step 2: Online-to-Offline Reward Alignment ' =
Source world model Source agent
environment A
Step 3: Min-Max Value Constraint State ! | exploration
alignment ' Reward :
T alignment
Please see our paper to find the technical details -—1’" ?
AED:
Ofﬂlne dataset Target world model Target agent
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https://qiwang067.github.io/coworld
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